BackgroundThe Kell blood group system expresses high and low frequency antigens with the most important in relation to transfusion including the antithetic KEL1 and KEL2; KEL3 and KEL4; KEL6 and KEL7 antigens. Kell is a clinically relevant system, as it is highly immunogenic and anti-KEL antibodies are associated with hemolytic transfusion reactions and hemolytic disease of the fetus and newborn. Although required in some situations, Kell antigen phenotyping is restricted due to technical limitations. In these cases, molecular approaches maybe a solution. This study proposes three polymerase chain reaction genotyping protocols to analyze the single nucleotide polymorphisms responsible for six Kell antithetic antigens expressed in a Brazilian population. MethodsDNA was extracted from 800 blood donor samples and three polymerase chain reaction-restriction fragment length polymorphism protocols were used to genotype the KEL*1/KEL*2, KEL*3/KEL*4 and KEL*6/KEL*7 alleles. KEL*3/KEL*4 and KEL*6/KEL*7 genotyping was standardized using the NlaIII and MnlI restriction enzymes and validated using sequencing. KEL*1/KEL*2 genotyping was performed using a previously reported assay. ResultsKEL genotyping was successfully implemented in the service; the following distribution of KEL alleles was obtained for a population from southeastern Brazil: KEL*1 (2.2%), KEL*2 (97.8%), KEL*3 (0.69%), KEL*4 (99.31%), KEL*6 (2.69%) and KEL*7 (97.31%). Additionally, two individuals with rare genotypes, KEL*1/KEL*1 and KEL*3/KEL*3, were identified. ConclusionKEL allele genotyping using these methods proved to be reliable and applicable to predict Kell antigen expressions in a Brazilian cohort. This easy and efficient strategy can be employed to provide safer transfusions and to help in rare donor screening.
Background We evaluated different technological approaches and anti-D clones to propose the most appropriate serologic strategy in detecting the largest numbers of D variants in blood donors. Methods We selected 101 samples from Brazilian blood donors with different expressions of D in our donor routine. The tests were performed in immediate spin (IS) with eleven commercially available anti-D reagents in a tube and microplate. The D confirmatory tests for the presence of weak D included the indirect antiglobulin test (IAT) in a tube, gel and solid-phase red blood cell adherence (SPRCA). All DNA samples were extracted from peripheral blood and the D variants were classified using different molecular assays. Results The RHD variants identified by molecular analysis included weak D types (1, 2, 3, 11 and 38) and partial Ds (DAR1.2, DAR1, DAR3.1, DAU0, DAU2, DAU4, DAU5, DAU6, DMH and DVII). The monoclonal-monoclonal blend RUM-1/MS26 was the best anti-D reagent used in detecting the D antigen in the IS phase in a tube, reacting with 83.2% of the D variants, while the anti-D blend D175 + 415 was the best monoclonal antibody (MoAb) used in a microplate to minimize the need for an IAT, reacting with 83.2% of the D variants. The D confirmatory tests using SPRCA showed a reactivity (3 - 4+) with 100% of the D variant samples tested. Conclusion Our results show that, even using sensitive methods and MoAbs to ensure the accurate assignment of the D antigen, at least 17% of our donor samples need a confirmatory D test in order to avoid alloimmunization in D-negative patients.
Providing blood units for patients with an antibody to a high-prevalence antigen or with multiple common antibodies is a constant challenge to the blood banks. Finding a compatible donor requires extensive screening, which incurs a large amount of investment. In this article, we share our experience of organizing a rare donor inventory with limited resources, we include the strategy used for finding rare donors, and we share the difficulties found during the implementation of the approach and the results obtained. Immunohematology 2015;31:20–23.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.