In this study the effects of all-trans retinoic acid (ATRA) on cell cycle and apoptosis of MCF-7 human breast cancer cells were investigated to elucidate the mechanisms underlying the antineoplastic potential of this retinoid in breast cancer. The antiproliferative effect of ATRA was evaluated by DNA content measurements and dual-parameter flow cytometry of bromodeoxyuridine (BrdU) incorporation and of the expression of cell cycle-related proteins (Ki-67 as proliferation marker and statin as quiescence marker) vs DNA content. Apoptosis was also studied by flow cytometry of either DNA content or Annexin V labelling. After 10(-6) M ATRA treatment, the fraction of S-phase cells decreased significantly, and cells accumulated in the G0/G1 range of DNA contents. Dual-parameter flow cytograms showed a decrease in the percentage of Ki-67-labelled cells (after 10 days, only 20% of the cells were still positive for Ki-67 compared with 95% in controls), while the fraction of statin-positive cells increased slightly. From 3 days of treatment onwards, apoptosis was found to occur. These results show that ATRA-induced inhibition of MCF-7 cell growth is related to two mechanisms, i.e. the block of cell proliferation, mostly in a pre-S phase, and the induction of apoptosis. These results should be taken into account when attempting to design treatment programmes that associate ATRA with antineoplastic compounds of different cell cycle specificity.
Statin, a 57-kDa nuclear protein, has been recognized as a unique marker of quiescent (Go) cells; specific monoclonal antibodies (MoAb) against statin have been produced and used to label resting cells in tissue sections and in cultured cells. We present an improved method for the identification of Go cells by dual-parameter flow cytometry of statin expression and DNA content. The appropriate technical conditions were set up by using resting and cycling human fibroblasts as a model cell system. Several fixatives proved to be suitable for the immunocytochemical detection of statin; among them, 70% ethanol was selected because this fixation procedure is suitable for DNA staining with intercalating dyes and is routinely used for the immunolabeling of proliferation markers (such as proliferating cell nuclear antigen [PCNA] and Ki-67) and of bromodeoxyuridine (BrdUrd) incorporation. Following cell permeabilization with detergent, exposure to the antistatin antibody (S-44), and indirect fluorescein isothiocyanate immunolabeling, cells were counterstained for DNA with propidium iodide and analyzed by dual-parameter flow cytometry. In cells from several animal sources (rat thymocytes and C6 glioma cells, mouse 3T3 cells, and human MCF-7 cells), under different experimental conditions, the expression of statin was found to correlate inversely with that of PCNA and Ki-67, and with the BrdUrd labeling index. In dualparameter flow scattergrams, Go (statin positive) cells can be discriminated from the potentially cycling (statin negative) GI cells, i.e., within a cell fraction having the same DNA content. This approach can be envisaged as a powerful tool both for monitoring changes in the resting cell fraction and for investigating the process of Go+ transition in unperturbed and drug-treated cell populations. 0 1995 Wiley-Liss, Inc.
Tamoxifen is known to inhibit the growth of some human mammary carcinoma cells; this effect is accompanied by a decrease in the proportion of cells synthesizing DNA. In this work, flow cytometry of DNA and of bromodeoxyuridine labeling and the evaluation of the cell cycle-related antigens Ki-67, PCNA, and statin were used to investigate the changes in the proliferation kinetics of MCF-7 cells before and after treatment with 10(-7) M TAM. The treatment with TAM induced a significant decrease in the fraction of S-phase cells and an increase in those with a DNA content typical of G0/1 phase. The TAM-induced block in G0/1 is paralleled by a decrease in the frequency of cells expressing Ki-67 and PCNA, and by an increase in statin-positive (G0) cells. These results confirmed that the TAM-induced inhibition of cell growth is associated with major changes in the cell cycle parameters of MCF-7 cells, and provide the first experimental evidence that two main mechanisms are operating: the accumulation of cells in G1, before the onset of S-phase, and the exit of some cells from the cycling compartment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.