Summary
The dorsal raphe nucleus (DRN) contains the largest group of serotonin-producing neurons in the brain and projects to regions controlling reward. Although pharmacological studies suggest that serotonin inhibits reward-seeking, electrical stimulation of the DRN strongly reinforces instrumental behavior. Here, we provide a targeted assessment of the behavioral, anatomical, and electrophysiological contributions of serotonergic and non-serotonergic DRN neurons to reward processes. To explore DRN heterogeneity, we used a simultaneous two-vector knockout/optogenetic stimulation strategy, as well as cre-induced and cre-silenced vectors in several cre-expressing transgenic mouse lines. We found that the DRN is capable of reinforcing behavior primarily via non-serotonergic neurons, whose main projection target is the ventral tegmental area (VTA). Furthermore, these non-serotonergic projections provide glutamatergic excitation of VTA dopamine neurons and account for a large majority of the DRN-VTA pathway. These findings help to resolve apparent discrepancies between the roles of serotonin versus the DRN in behavioral reinforcement.
SignificanceParkinson’s disease (PD) is a chronic dopamine (DA) neuron degenerative disorder. Little is known about factors that impact vulnerability of DA neurons to pathological insults. In this study, we found that vesicular glutamate transporter 2 (VgluT2) expression may play an important role in protecting DA neurons. Selective deletion of VgluT2 in DA neurons led to a significant reduction in expression of brain-derived neurotrophic factor and its receptor tyrosine receptor kinase B and a significant increase in DA neuron death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Restoration of VgluT2 expression in DA neurons reversed these alterations. These findings suggest that reduced VgluT2 expression in DA neurons may constitute a risk factor in the development of PD and suggest potential therapeutic strategies for boosting resilience of DA neurons.
SUMMARY
Glutamate has been implicated in a wide range of brain pathologies and is thought to be metabolized via the astrocyte-specific enzyme glutamine synthetase (GS). We show here that oligodendrocytes, the myelinating glia of the central nervous system, also express high levels of GS in caudal regions like the midbrain and the spinal cord. Selective removal of oligodendrocyte GS in mice led to reduced brain glutamate and glutamine levels and impaired glutamatergic synaptic transmission without disrupting myelination. Furthermore, animals lacking oligodendrocyte GS displayed deficits in cocaine-induced locomotor sensitization, a behavior that is dependent on glutamatergic signaling in the midbrain. Thus, oligodendrocytes support glutamatergic transmission through the actions of GS and may represent a therapeutic target for pathological conditions related to brain glutamate dysregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.