We report a general synthetic approach to tetrapod-shaped colloidal nanocrystals made of various combinations of II-VI semiconductors. Uniform tetrapods were prepared using preformed seeds in the sphalerite structure, onto which arms were grown by coinjection of the seeds and chemical precursors into a hot mixture of surfactants. By this approach, a wide variety of core materials could be chosen (in practice, most of the II-VI semiconductors that could be prepared in the sphalerite phase, namely, CdSe, ZnTe, CdTe); in contrast, the best materials for arm growth were CdS and CdTe. The samples were extensively characterized with the aid of several techniques.
Welding nanocrystals for assembly: The welding of Au domains grown on the tips of shape-controlled cadmium chalcogenide colloidal nanocrystals is used as a strategy for their assembly. Iodine-induced coagulation of selectively grown Au domains leads to assemblies such as flowerlike structures based on bullet-shaped nanocrystals, linear and cross-linked chains of nanorods, and globular networks with tetrapods as building blocks
Abstract.Hybrid composites obtained upon blending conjugated polymers and colloidal semiconductor nanocrystals are regarded as attractive photoactive materials for optoelectronic applications.Here we demonstrate that tailoring nanocrystal surface chemistry permits to control noncovalent and electronic interactions between organic and inorganic components. We show that the pending moieties of organic ligands at the nanocrystal surface do not merely confer colloidal stability while hindering charge separation and transport, but drastically impact morphology of hybrid composites during formation from blend solutions. The relevance of our approach to photovoltaic applications is demonstrated for composites based on poly(3-hexylthiophene) and lead sulfide nanocrystals, considered as inadequate until this report, which enable the fabrication of hybrid solar cells displaying a power conversion efficiency that reaches 3 %. By investigating (quasi)steady-state and time-resolved photo-induced processes in the nanocomposites and their constituents, we ascertain that electron transfer occurs at the hybrid interface yielding long-lived separated charge carriers, whereas interfacial hole transfer appears hindered. Here we provide a reliable alternative aiming to gain control over macroscopic optoelectronic properties of polymer/nanocrystal composites by mediating their non-covalent interactions via ligands' pending moieties, thus opening new possibilities towards efficient solution-processed hybrid solar cells.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.