EMILIN2 is an extracellular matrix constituent playing an important role in angiogenesis; however, the underlying mechanism is unknown. Here we show that EMILIN2 promotes angiogenesis by directly binding epidermal growth factor receptor (EGFR), which enhances interleukin-8 (IL-8) production. In turn, IL-8 stimulates the proliferation and migration of vascular endothelial cells. Emilin2 null mice were generated and exhibited delayed retinal vascular development, which was rescued by the administration of the IL-8 murine ortholog MIP-2. Next, we assessed tumor growth and tumor-associated angiogenesis in these mice. Tumor cell growth in Emilin2 null mice was impaired as well as the expression of MIP-2. The vascular density of the tumors developed in Emilin2 null mice was prejudiced and vessels perfusion, as well as response to chemotherapy, decreased. Accordingly, human tumors expressing high levels of EMILIN2 were more responsive to chemotherapy. These results point at EMILIN2 as a key microenvironmental cue affecting vessel formation and unveil the possibility to develop new prognostic tools to predict chemotherapy efficacy.
EMILIN2 is an extracellular matrix (ECM) protein that exerts contradictory effects within the tumour microenvironment: it induces apoptosis in a number of tumour cells, but it also enhances tumour neo-angiogenesis. In this study, we describe a new mechanism by which EMILIN2 attenuates tumour cell viability. Based on sequence homology with the cysteine-rich domain (CRD) of the Frizzled receptors, we hypothesized that EMILIN2 could affect Wnt signalling activation and demonstrate direct interaction with the Wnt1 ligand. This physical binding leads to decreased LRP6 phosphorylation and to the down-modulation of β-catenin, TAZ and their target genes. As a consequence, EMILIN2 negatively affects the viability, migration and tumourigenic potential of MDA-MB-231 breast cancer cells in a number of two- and three-dimensional in vitro assays. EMILIN2 does not modulate Wnt signalling downstream of the Wnt-Frizzled interaction, since it does not affect the activation of the pathway following treatment with the GSK3 inhibitors LiCl and CHIR99021. The interaction with Wnt1 and the subsequent biological effects require the presence of the EMI domain, as there is no effect with a deletion mutant lacking this domain. Moreover, in vivo experiments show that the ectopic expression of EMILIN2, as well as treatment with the recombinant protein, significantly reduce tumour growth and dissemination of cancer cells in nude mice. Accordingly, the tumour samples are characterized by a significant down-regulation of the Wnt signalling pathway. Altogether, these findings provide further evidence of the complex regulations governed by EMILIN2 in the tumour microenvironment, and they identify a key extracellular regulator of the Wnt signalling pathway.
Angiogenesis is a key process occurring under both physiological and pathological conditions and is a hallmark of cancer. We have recently demonstrated that the extracellular matrix (ECM) molecule MULTIMERIN2 exerts an angiostatic function through the binding to VEGF-A. In this study we identify the region of the molecule responsible for the binding and demonstrate that the interaction involves the carbohydrate chains. MULTIMERIN2 interacts with other VEGF-A isoforms and VEGF family members such as VEGF-B, -C, -D and PlGF-1 suggesting that the molecule may function as a reservoir for different cytokines. In response to VEGF-A165, we show that MULTIMERIN2 impairs the phosphorylation of VEGFR2 at both Y1175 and Y1214 residues, halts SAPK2/p38 activation and negatively affects endothelial cell motility. In addition, MULTIMERIN2 and its active deletion mutant decrease the availability of the VEGFR2 receptor at the EC plasma membrane. The ectopic expression of MULTIMERIN2 or its active deletion mutant led to a striking reduction of tumor-associated angiogenesis and tumor growth. In conclusion, these data pinpoint MULTIMERIN2 as a key angiostatic molecule and disclose the possibility to develop new prognostic tools and improve the management of cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.