EMILIN2 is an extracellular matrix constituent playing an important role in angiogenesis; however, the underlying mechanism is unknown. Here we show that EMILIN2 promotes angiogenesis by directly binding epidermal growth factor receptor (EGFR), which enhances interleukin-8 (IL-8) production. In turn, IL-8 stimulates the proliferation and migration of vascular endothelial cells. Emilin2 null mice were generated and exhibited delayed retinal vascular development, which was rescued by the administration of the IL-8 murine ortholog MIP-2. Next, we assessed tumor growth and tumor-associated angiogenesis in these mice. Tumor cell growth in Emilin2 null mice was impaired as well as the expression of MIP-2. The vascular density of the tumors developed in Emilin2 null mice was prejudiced and vessels perfusion, as well as response to chemotherapy, decreased. Accordingly, human tumors expressing high levels of EMILIN2 were more responsive to chemotherapy. These results point at EMILIN2 as a key microenvironmental cue affecting vessel formation and unveil the possibility to develop new prognostic tools to predict chemotherapy efficacy.
Background: EMILIN-3 is the least characterized member of the EMILIN/Multimerin family. Results: EMILIN-3 forms homotrimers and higher order oligomers, binds heparin, has a dynamic expression during development and a restricted distribution in adult tissues, and serves as a pro-TGF- antagonist.
Conclusion:The structure and expression of EMILIN-3 are different from other EMILINs/Multimerins. Significance: EMILIN-3, a TGF- antagonist, is likely to be an important regulator during development of several tissues.
Objective-Emilin-1 is a protein of elastic extracellular matrix involved in blood pressure (BP) control by negatively affecting transforming growth factor (TGF)-β processing. Emilin1 null mice are hypertensive. This study investigates how Emilin-1 deals with vascular mechanisms regulating BP. Methods and Results-This study uses a phenotype rescue approach in which Emilin-1 is expressed in either endothelial cells or vascular smooth muscle cells of transgenic animals with the Emilin1 −/− background. We found that normalization of BP required Emilin-1 expression in smooth muscle cells, whereas expression of the protein in endothelial cells did not modify the hypertensive phenotype of Emilin1 −/− mice. We also explored the effect of treatment with anti-TGF-β antibodies on the hypertensive phenotype of Emilin1 −/− mice, finding that neutralization of TGF-β in Emilin1 null mice normalized BP quite rapidly (2 weeks). Finally, we evaluated the vasoconstriction response of resistance arteries to perfusion pressure and neurohumoral agents in different transgenic mouse lines. Interestingly, we found that the hypertensive phenotype was coupled with an increased arteriolar myogenic response to perfusion pressure, while the vasoconstriction induced by neurohumoral agents remained unaffected. We further elucidate that, as for the hypertensive phenotype, the increased myogenic response was attributable to increased TGF-β activity. Key Words: Emilin1 ◼ myogenic response ◼ systemic hypertension ◼ transforming growth factor ◼ vascular smooth muscle
Conclusion-Our
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.