Our previous studies indicated that millimolar doses of aspirin induced growth arrest and resistance to anticancer drug treatment in Caco-2 cells. The present study was designed to better elucidate at the molecular level the effect of aspirin treatment on pathways that regulate cell death during serum withdrawal. Caco-2 cells were cultured under serum deprivation in the presence or absence of aspirin. Effects on cell cycle, phosphatidylinositol 3-kinase (PI3-kinase) and mitogen-activated protein (MAP) kinase pathways were investigated. We found that aspirin, but not the selective cyclooxygenase-2 inhibitor N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS-398); prevented apoptosis and G 2 /M transition after prolonged Caco-2 cells serum deprivation. Aspirin-dependent inhibition of apoptosis and G 2 /M transition was prevented by treatment with the PI3-kinase inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), but not with the MAP kinase kinase inhibitor 2Ј-amino-3Ј-methoxyflavone (PD98059). The effects of aspirin were mediated at molecular levels, through activation of PI3-kinase/AKT pathway and increase in the p21Cip/WAF1 level. The ability of aspirin to activate AKT protein was observed also in presence of etoposide cotreatment. Our data indicate a new intracellular target of aspirin with potential clinical impact for treatment schedules involving both anticancer agents and aspirin in malignancies.
This study demonstrated that coronopilin efficiently inhibited leukaemia cell population growth by triggering cell type-specific responses. Moreover, coronopilin-mediated cell population expansion inhibition was specific to neoplastic cells, as normal white blood cell viability was not significantly affected. Thus, coronopilin may represent an interesting new chemical scaffold upon which to develop new anti-leukaemic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.