Glycan recognition by lectins initiates clinically relevant processes such as toxin binding or tumor spread. Thus, the development of potent inhibitors has a medical perspective. Toward this goal, we report the synthesis of both rigid and flexible bivalent lactosides on scaffolds that include secondary and tertiary terephthalamides and N,N 0 -diglucosylterephthalamides. Construction of these compounds involved Schmidt-Michel glycosidation, and amide coupling or Ugi reactions of relevant glycosyl amines in key steps. A glycocluster based on a rigid glycophane was also prepared from coupling of a glucuronic acid derivative and p-xylylenediamine with subsequent ring-closing metathesis. Finally, a more flexible bivalent lactoside was produced from lactosyl azide with use of the copper-catalyzed azide-alkyne cycloaddition. Distances between lactose residues were analyzed computationally as were their orientations for the relatively rigid subset of compounds. Distinct spacing properties were revealed by varying the structure of the scaffold or by varying the location of the lactose residue on the scaffold. To relate these features to bioactivity a plant toxin and human adhesion/growth-regulatory galectins were used as sensors in three types of assay, i.e. measuring agglutination of erythrocytes, binding to glycans of a surface-immobilized glycoprotein, or binding to human cells. Methodologically, the common hemeagglutination assay was found to be considerably less sensitive than both solid-phase and cell assays. The bivalent compounds were less effective at interfering with glycoprotein binding to the plant toxin than to human lectins. Significantly, a constrained compound was identified that displayed selectivity in its inhibitory potency between galectin-3 and its proteolytically processed form. Conversely, compounds with a high degree of flexibility showed notable ability to protect human cells from plant toxin binding. The applied conjugation chemistry thus is compatible with the long-term aim to produce potent and selective lectin inhibitors.
The conjugation of carbohydrates to synthetic scaffolds has the goal of preparing potent inhibitors of lectin binding. We herein report the synthesis of a panel of bivalent compounds (cyclophane and terephthalamide-derivatives) then used to establish the influence of scaffold flexibility on respective inhibitory potency in a medically relevant test system. Synthetic routes to two phenylenediamine-based glycocyclophanes involving Ugi reactions of glucuronic acid derivatives and subsequent ring closing metathesis are described, as are improvements for producing terephthalamide-based carbohydrate carriers. Assays were performed with human tumour cells measuring quantitatively the influence of the test compounds on fluorescent surface staining by labelled lectins. Biological evaluation using two different lines of cancer cells as well as cells with known alterations in the glycomic profile (cells treated with an inhibitor of glycan processing and a glycosylation mutant) reduced the risk of generating premature generalizations regarding inhibitor potency. Bioactivity relative to free mannose was invariably determined for the synthetic compounds. A clear trend for enhanced inhibitory properties for macrocyclic compounds compared to non-macrocyclic derivatives was discerned for one type of glycocyclophane. Herein we also document the impact of altering the spacing between the mannose residues, altering cell surface ligand density and cell-type reactivity. The applied strategy for the cell assays is proposed to be of general importance in the quest to identify medically relevant lectin inhibitors.
A glycotriazolophane (carbohydrate-triazole-cyclophane hybrid) has been synthesized from a sugar amino acid via copper-catalysed azide-alkyne cycloaddition.
Burkholderia cepacia complex (Bcc) is an opportunistic pathogen in cystic fibrosis patients which is inherently resistant to antimicrobial agents. The mechanisms of attachment and pathogenesis of Bcc, a group of 17 species, are poorly understood. The most commonly identified Bcc species in newly colonised patients, Burkholderia multivorans, continues to be acquired from the environment. Development of therapies which can prevent or reduce the risk of colonization on exposure to Bcc in the environment would be a better alternative to antimicrobial agents. Previously, it has been shown that Bcc strains bound to many glycolipid receptors on lung epithelia. Using a real-time PCR method to quantify the levels of binding of B. multivorans to the lung epithelial cells, we have examined glycoconjugate derivatives for their potential to inhibit host cell attachment. Bivalent lactosides previously shown to inhibit galectin binding significantly reduced the attachment of B. multivorans to CF lung epithelial cells at micromolar concentrations. This was in contrast to monosaccharides and lactose, which were only effective in the millimolar range. Development of glycoconjugate therapies such as these, which inhibit attachment to lung epithelial cells, represent an alternative means of preventing infection with inherently antimicrobially resistant pathogens such as B. multivorans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.