Hunger (811 million people, 2020) and food waste (931 million tonnes annually, 2020) are long-standing interconnected challenges that have plagued humankind for centuries. Food waste originates from various sources, including consumption habits and failures within the food supply chain. Given the growing concerns regarding food insecurity, malnutrition, and hunger, there is a pressing need to recover and repurpose as much food waste as possible. A growing body of knowledge identifies the valorisation (including upcycling) of food waste as one of the strategies to fight hunger by positively impacting food availability and food security. This paper evaluates the potential role of food waste valorisation, including upcycling, in reducing global hunger. A literature search was conducted to examine how converting food waste into value-added products, such as food formulations and farming inputs, can contribute to increasing food availability. The benefits of waste-to-food operations in improving food availability through producing food ingredients and products from materials that would have been wasted or discarded otherwise were discussed.
Agricultural waste has been a prominent environmental concern due to its significant negative impact on the environment when it is incinerated, disposed of in landfills, or burned. These scenarios promoted innovations in the food packaging sector using renewable resources, namely agri-food waste and by-products such as bagasse, pulps, roots, shells, straws, and wastewater for the extraction and isolation of biopolymers that are later transformed into packaging materials such as bioplastics, biofilms, paper, and cardboards, among others. In this context, the circular bioeconomy (CBE) model is shown in the literature as a viable alternative for designing more sustainable production chains. Moreover, the biorefinery concept has been one of the main links between the agri-food chain and the food packaging industry. This review article aimed to compile recent advances in the food packaging field, presenting main industrial and scientific innovations, economic data, and the challenges the food packaging sector has faced in favor of sustainable development.
A variety of bioactive substances present in fruits and vegetables processed products have health-promoting properties. Consumption of nutrient-rich plant-based products is essential to address undernutrition and micronutrient deficiencies. Preservation is paramount in manufacturing plant-based non-solid foods such as juices, purees, and sauces. Thermal processing has been widely used to preserve fruit and vegetable-based products by reducing enzymatic and microbial activities, thereby ensuring safety and prolonged shelf life. However, the nutritional value of products is compromised due to the deleterious effects of thermal treatments on essential nutrients and bioactive compounds. To prevent the loss of nutrients associated with thermal treatment, alternative technologies are being researched extensively. In studies conducted on non-solid food, UV-C treatment has been proven to preserve quality and minimize nutrient degradation. This review compiles information on the use of UV-C technology in preserving the nutritional attributes of non-solid foods derived from fruit and vegetables. Legislation, market potential, consumer acceptance, and limitations of UV-C are reviewed.
The high consumption of tomatoes worldwide has made them an essential source of health-promoting carotenoids that prevent a variety of chronic degenerative diseases, such as diabetes, high blood pressure, and cardiovascular disease. Tomatoes are available year-round, consumed fresh, and used as a raw material for the production of many processed products, such as juices, pastes, and purees. A plethora of carotenoids has been characterized in tomatoes. Most of the relevant carotenoids in the human bloodstream are supplied by fresh and processed tomatoes. Lycopene is the predominant carotenoid in tomato and tomato-based food products. Other carotenoids such as α-, β-, γ- and ξ-carotene, phytoene, phytofluene, neurosporene, and lutein are present in tomatoes and related products. There is a growing body of evidence that these bioactive compounds possess beneficial properties, namely anticarcinogenic, cardioprotective, and hepatoprotective effects among other health benefits, due to their antioxidant, anti-mutagenic, anti-proliferative, anti-inflammatory, and anti-atherogenic properties. This chapter analyzes the carotenoid composition of tomatoes and their based products as major contributors to the chronic disease-preventive properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.