Collaboration requires agents to coordinate their behavior on the fly, sometimes cooperating to solve a single task together and other times dividing it up into sub-tasks to work on in parallel. Underlying the human ability to collaborate is theory-of-mind (ToM), the ability to infer the hidden mental states that drive others to act. Here, we develop Bayesian Delegation, a decentralized multiagent learning mechanism with these abilities. Bayesian Delegation enables agents to rapidly infer the hidden intentions of others by inverse planning. We test Bayesian Delegation in a suite of multiagent Markov decision processes inspired by cooking problems. On these tasks, agents with Bayesian Delegation coordinate both their high-level plans (e.g., what sub-task they should work on) and their low-level actions (e.g., avoiding getting in each other's way). When matched with partners that act using the same algorithm, Bayesian Delegation outperforms alternatives. Bayesian Delegation is also a capable ad hoc collaborator and successfully coordinates with other agent types even in the absence of prior experience. Finally, in a behavioral experiment, we show that Bayesian Delegation makes inferences similar to human observers about the intent of others. Together, these results argue for the centrality of ToM for successful decentralized multi-agent collaboration.
To be good conversational partners, natural language processing (NLP) systems should be trained to produce contextually useful utterances. Prior work has investigated training NLP systems with communication-based objectives, where a neural listener stands in as a communication partner. However, these systems commonly suffer from semantic drift where the learned language diverges radically from natural language. We propose a method that uses a population of neural listeners to regularize speaker training. We first show that language drift originates from the poor uncertainty calibration of a neural listener, which makes high-certainty predictions on novel sentences. We explore ensemble-and dropoutbased populations of listeners and find that the former results in better uncertainty quantification. We evaluate both population-based objectives on reference games, and show that the ensemble method with better calibration enables the speaker to generate pragmatic utterances while scaling to a large vocabulary and generalizing to new games and listeners. 1
Collaboration requires agents to coordinate their behavior on the fly, sometimes cooperating to solve a single task together and other times dividing it up into sub-tasks to work on in parallel. Here, we develop Bayesian Delegation, a decentralized multi-agent learning mechanism with these abilities. Bayesian Delegation enables agents to rapidly infer the hidden intentions of others by inverse planning. We test Bayesian Delegation in a suite of multi-agent Markov decision processes inspired by cooking problems. On these tasks, agents with Bayesian Delegation coordinate both their high-level plans (e.g. what sub-task they should work on) and their low-level actions (e.g. avoiding getting in each other’s way). In a self-play evaluation, Bayesian Delegation outperforms alternative algorithms. Bayesian Delegation is also a capable ad-hoc collaborator and successfully coordinates with other agent types even in the absence of prior experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.