Background: Surfactant protein D (SP-D) deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D) has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency.
Surfactant protein D (SP-D) is primarily expressed in the lungs and modulates pro- and anti-inflammatory processes to toxic challenge, maintaining lung homeostasis. We investigated the interaction between NPs and SP-D and subsequent uptake by cells involved in lung immunity. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) measured NP aggregation, particle size and charge in native human SP-D (NhSP-D) and recombinant fragment SP-D (rfhSP-D). SP-D aggregated NPs, especially following the addition of calcium. Immunohistochemical analysis of A549 epithelial cells investigated the co-localization of NPs and rfhSP-D. rfhSP-D enhanced the co-localisation of NPs to epithelial A549 cells in vitro. NP uptake by alveolar macrophages (AMs) and lung dendritic cells (LDCs) from C57BL/6 and SP-D knock-out mice were compared. AMs and LDCs showed decreased uptake of NPs in SP-D deficient mice compared to wild-type mice. These data confirmed an interaction between SP-D and NPs, and subsequent enhanced NP uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.