can allow the discovery of basic new physical phenomena and the development of new device concepts. [1] The discovery of new vdW quantum materials and their heterostructures starting from graphene, insulators, semiconductors, superconductors, and topological materials has revolutionized both fundamental and applied research. [2,3] The most recent addition to this vdW family is magnets, which have offered various advantages over conventional magnets and opened new perspectives in vdW heterostructure designs. [4][5][6] In addition to the atomically thin and flat nature of vdW magnets, flexibility, gate tunability, strong proximity interactions, and twist angle between the layers can offer a unique degree of freedom and an innovative platform for device functionalities. [4,5] Recently, several vdW magnets have emerged with the discovery of insulating Cr 2 Ge 2 Te 6 , [7] semiconducting (CrI 3 , [8] CrBr 3 [9] ), and metallic Fe x GeTe 2 . [10,11] The insulating vdW magnets are useful for spin-filter tunneling [9,12] and proximityinduced magnetism, [13][14][15] whereas the metallic magnets can be used as electrodes in magnetic tunnel junctions, [16] observationThe discovery of van der Waals (vdW) magnets opened a new paradigm for condensed matter physics and spintronic technologies. However, the operations of active spintronic devices with vdW ferromagnets are limited to cryogenic temperatures, inhibiting their broader practical applications. Here, the robust room-temperature operation of lateral spin-valve devices using the vdW itinerant ferromagnet Fe 5 GeTe 2 in heterostructures with graphene is demonstrated. The room-temperature spintronic properties of Fe 5 GeTe 2 are measured at the interface with graphene with a negative spin polarization. Lateral spin-valve and spin-precession measurements provide unique insights by probing the Fe 5 GeTe 2 /graphene interface spintronic properties via spin-dynamics measurements, revealing multidirectional spin polarization. Density functional theory calculations in conjunction with Monte Carlo simulations reveal significantly canted Fe magnetic moments in Fe 5 GeTe 2 along with the presence of negative spin polarization at the Fe 5 GeTe 2 / graphene interface. These findings open opportunities for vdW interface design and applications of vdW-magnet-based spintronic devices at ambient temperatures.
We synthesized zinc oxide-reduced graphene oxide (ZnO-rGO) composites using a one-pot chemical deposition method at room temperature. Zinc powder and graphene oxide (GO) of different mass ratios (1 : 1, 1 : 2, 1 : 5, 1 : 10, and 1 : 20 GO to Zn) were used as precursors in a mildly alkaline solution. UV-Vis spectroscopy was used to study the photocatalytic efficiency of the samples through the photodegradation of methylene blue (MB). UV-Vis measurements show the fast decomposition of methylene blue under UV light illumination with the best degradation efficiency of 97.7% within one hour, achieved with sample ZG2 (1 GO : 2 Zn mass ratio). The corresponding degradation rate was kZG2 = 0.1253 min−1, which is at least 5.5 times better than other existing works using hydrothermal methods. We argue that the excellent photodegradation of MB by ZG2 is due to the efficient charge separation brought about by the electronic interaction of the rGO with the ZnO and the formation of a Zn-O-C bond, as supported by XRD and Raman spectroscopy measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.