can allow the discovery of basic new physical phenomena and the development of new device concepts. [1] The discovery of new vdW quantum materials and their heterostructures starting from graphene, insulators, semiconductors, superconductors, and topological materials has revolutionized both fundamental and applied research. [2,3] The most recent addition to this vdW family is magnets, which have offered various advantages over conventional magnets and opened new perspectives in vdW heterostructure designs. [4][5][6] In addition to the atomically thin and flat nature of vdW magnets, flexibility, gate tunability, strong proximity interactions, and twist angle between the layers can offer a unique degree of freedom and an innovative platform for device functionalities. [4,5] Recently, several vdW magnets have emerged with the discovery of insulating Cr 2 Ge 2 Te 6 , [7] semiconducting (CrI 3 , [8] CrBr 3 [9] ), and metallic Fe x GeTe 2 . [10,11] The insulating vdW magnets are useful for spin-filter tunneling [9,12] and proximityinduced magnetism, [13][14][15] whereas the metallic magnets can be used as electrodes in magnetic tunnel junctions, [16] observationThe discovery of van der Waals (vdW) magnets opened a new paradigm for condensed matter physics and spintronic technologies. However, the operations of active spintronic devices with vdW ferromagnets are limited to cryogenic temperatures, inhibiting their broader practical applications. Here, the robust room-temperature operation of lateral spin-valve devices using the vdW itinerant ferromagnet Fe 5 GeTe 2 in heterostructures with graphene is demonstrated. The room-temperature spintronic properties of Fe 5 GeTe 2 are measured at the interface with graphene with a negative spin polarization. Lateral spin-valve and spin-precession measurements provide unique insights by probing the Fe 5 GeTe 2 /graphene interface spintronic properties via spin-dynamics measurements, revealing multidirectional spin polarization. Density functional theory calculations in conjunction with Monte Carlo simulations reveal significantly canted Fe magnetic moments in Fe 5 GeTe 2 along with the presence of negative spin polarization at the Fe 5 GeTe 2 / graphene interface. These findings open opportunities for vdW interface design and applications of vdW-magnet-based spintronic devices at ambient temperatures.
Recent experiments
on Fe
5
GeTe
2
suggested
the presence of a symmetry breaking of its conventional crystal structure.
Here, using density functional theory calculations, we elucidate that
the stabilization of the (√3 × √3)
R
30° supercell structure is caused by the swapping of Fe atoms
occurring in the monolayer limit. The swapping to the vicinity of
Te atoms is facilitated by the spontaneous occurrence of Fe vacancy
and its low diffusion barrier. Our calculated magnetic exchange parameters
show the simultaneous presence of ferromagnetic and antiferromagnetic
exchange among a particular type of Fe atom. The Fe sublattice projected
magnetization obtained from Monte Carlo simulations clearly demonstrates
an exotic temperature-dependent behavior of this Fe type along with
a large canting angle at
T
= 0 K, indicating the
presence of a complex noncollinear magnetic order. We propose that
the low-temperature crystal structure results from the swapping between
two sublattices of Fe, giving rise to peculiar magnetization obtained
in experiments.
The FenGeTe2 systems are recently discovered two-dimensional van-der-Waals materials, exhibiting magnetism at room temperature. The sub-systems belonging to FenGeTe2 class are special because they show site-dependent magnetic behavior. We focus on the critical evaluation of magnetic properties and electron correlation effects in FenGeTe2 (n = 3, 4, 5) (FGT) systems performing first-principles calculations. Three different ab initio approaches have been used primarily, viz., (i) standard density functional theory (GGA), (ii) incorporating static electron correlation (GGA + U) and (iii) inclusion of dynamic electron correlation effect (GGA + DMFT). Our results show that GGA + DMFT is the more accurate technique to correctly reproduce the magnetic interactions, experimentally observed transition temperatures and electronic properties. The inaccurate values of magnetic moments, exchange interactions obtained from GGA + U make this method inapplicable for the FGT family. Correct determination of magnetic properties for this class of materials is important since they are promising candidates for spin transport and spintronic applications at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.