work on the photochemistry offlavins. He is currently a Senior Lecturer in Chemistry in the Faculty of Science and Technology at the North East Wales Institute, Wrexham. His research interests are the photobiology of D N A repair, photochemistry of photomovement of microorganisms, and industrial applications of photochemistry.
A series of photo-CIDNP (chemically induced dynamic nuclear polarization) experiments were performed on pyrimidine monomers and dimers, using the electron-donor N alpha-acetyltryptophan (AcTrp) as a photosensitizer. The CIDNP spectra give evidence for the existence of both the dimer radical anion, which is formed by electron transfer from the excited AcTrp* to the dimer, and its dissociation product, the monomer radical anion. The AcTrp spectra are completely different from those obtained with an oxidizing sensitizer like anthraquinone-2-sulfonate, because of different unpaired electron spin density distributions in pyrimidine radical anion and cation. In the spectra of the anti (1,3-dimethyluracil) dimers, polarization is detected that originates from a spin-sorting process in the dimer radical pair, pointing to a relatively long lifetime of the dimer radical anions involved. Although the dimer radical anions of the 1,1'-trimethylene-bridged pyrimidines may have a relatively long lifetime as well, their protons have only very weak hyperfine interaction, which explains why no polarization originating from the dimer radical pair is detected. In the spectra of the bridged pyrimidines, polarized dimer protons are observed as a result of spin sorting in the monomer radical pair, from which it follows that the dissociation of dimer radical anion into monomer radical anion is reversible. A study of CIDNP intensities as a function of pH shows that a pH between 3 and 4 is optimal for observing monomer polarization that originates from spin-sorting in the monomer radical pair. At higher pH the geminate recombination polarization is partly cancelled by escape polarization arising in the same product.
Abstract— –Cyclobutadipyrimidines (pyrimidine dimers) undergo splitting that is photosensitized by indole derivatives. We have prepared a compound in which a two‐carbon linker connects a dimer to an indolyl group. Indolyl fluorescence quenching indicated that the two portions of the molecule interact in the excited state. Intramolecular photosensitization of dimer splitting was remarkably solvent dependent, ranging from φspl= 0.06 in water to a high value of φspl= 0.41 in the least polar solvent mixture examined, l,4‐dioxane‐isopentane(5: 95). A derivative with a 5‐methoxy substituent on the indolyl ring behaved similarly. These results have been interpreted in terms of electron transfer from the excited indolyl group to the dimer, which would produce a charge‐separated species. The dimer anion within such a species could split or undergo back electron transfer. The possibility that back electron transfer is in the Marcus inverted region can be used to rationalize the observed solvent dependence of splitting. In the inverted region, the high driving force of a charge recombination exceeds the reorganization energy of the solvent, which is less for solvents of low polarity than those of high polarity. If this theory is applicable to the hypothetical charge‐separated species, a slower back electron transfer, and consequently higher splitting efficiencies, would be expected in solvents of lower polarity. Photolyases may have evolved in which a low polarity active site retards back transfer of an electron and thereby contributes to the efficiency of the enzymatic dimer splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.