The phosphorylated form of LRRK2, pS935 LRRK2, has been proposed as a target modulation biomarker for LRRK2 inhibitors. The primary aim of the study was to characterize and qualify this biomarker for therapeutic trials of LRRK2 inhibitors in Parkinson's disease (PD). To this end, analytically validated assays were used to monitor levels of pS935 LRRK2 and total LRRK2 in peripheral blood mononuclear cells (PBMCs) from the following donor groups: healthy controls, idiopathic PD, and G2019S carriers with and without PD. Neither analyte correlated with age, gender, or disease severity. While total LRRK2 levels were similar across the four groups, there was a significant reduction in pS935 LRRK2 levels in disease-manifesting G2019S carriers compared to idiopathic PD. In aggregate, these data indicate that phosphorylation of LRRK2 at S935 may reflect a state marker for G2019S LRRK2-driven PD, the underlying biology for which requires investigation in future studies. This study also provides critical foundational data to inform the integration of pS935 and total LRRK2 levels as biomarkers in therapeutic trials of LRRK2 kinase inhibitors.
We recommend the application of mouse serial sampling, particularly with limiting drug supply or specialized animal models. Overall the efficiencies gained by serial sampling were 40-80% savings in study cost, animal usage, study length and drug conservation while inter-subject variability across PK parameters was less than 30%.
Covalent attachment of poly(ethylene glycol) (PEG) to therapeutic proteins has been used to prolong in vivo exposure of therapeutic proteins. We have examined pharmacokinetic, biodistribution, and biophysical profiles of three different tumor necrosis factor alpha (TNF) Nanobody-40 kDa PEG conjugates: linear 1 × 40 KDa, branched 2 × 20 kDa, and 4 × 10 kDa conjugates. In accord with earlier reports, the superior PK profile was observed for the branched versus linear PEG conjugates, while all three conjugates had similar potency in a cell-based assay. Our results also indicate that (i) a superior PK profile of branched versus linear PEGs is likely to hold across species, (ii) for a given PEG size, the extent of PEG branching affects the PK profile, and (iii) tissue penetration may differ between linear and branched PEG conjugates in a tissue-specific manner. Biophysical analysis (R(g)/R(h) ratio) demonstrated that among the three protein-PEG conjugates the linear PEG conjugate had the most extended time-average conformation and the most exposed surface charges. We hypothesized that these biophysical characteristics of the linear PEG conjugate accounts for relatively less optimal masking of sites involved in elimination of the PEGylated Nanobodies (e.g., intracellular uptake and proteolysis), leading to lower in vivo exposure compared to the branched PEG conjugates. However, additional studies are needed to test this hypothesis.
Purpose: Gastrointestinal cancers remain areas of high unmet need despite advances in targeted and immunotherapies. Here, we demonstrate potent, tumor-selective efficacy with PF-07062119, a T-cell engaging CD3 bispecific targeting tumors expressing Guanylyl Cyclase C (GUCY2C), which is expressed widely across colorectal cancer and other gastrointestinal malignancies. In addition, to address immune evasion mechanisms, we explore combinations with immune checkpoint blockade agents and with antiangiogenesis therapy. Experimental Design: PF-07062119 activity was evaluated in vitro in multiple tumor cell lines, and in vivo in established subcutaneous and orthotopic human colorectal cancer xenograft tumors with adoptive transfer of human T cells. Efficacy was also evaluated in mouse syngeneic tumors using human CD3e transgenic mice. IHC and mass cytometry were performed to demonstrate drug biodistribution, recruitment of activated T cells, and to identify markers of immune evasion. Combination studies were performed with anti-PD-1/PD-L1 and anti-VEGF antibodies. Toxicity and pharmacokinetic studies were done in cynomolgus macaque. Results: We demonstrate that GUCY2C-positive tumors can be targeted with an anti-GUCY2C/anti-CD3e bispecific, with selective drug biodistribution to tumors. PF-07062119 showed potent T-cell-mediated in vitro activity and in vivo efficacy in multiple colorectal cancer human xenograft tumor models, including KRASand BRAF-mutant tumors, as well as in the immunocompetent mouse syngeneic tumor model. PF-07062119 activity was further enhanced when combined with anti-PD-1/ PD-L1 treatment or in combination with antiangiogenic therapy. Toxicity studies in cynomolgus indicated a monitorable and manageable toxicity profile. Conclusions: These data highlight the potential for PF-07062119 to demonstrate efficacy and improve patient outcomes in colorectal cancer and other gastrointestinal malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.