Simian adeno-associated virus (AAV) serotype rh.10 is a promising gene therapy tool, achieving safe, sustained transgene expression in the nervous system, lung, liver and heart in animal models. To date, preexisting immunity in humans has not been confirmed, though exposure is unexpected. We compared the humoral immune response with serotypes AAVrh.10 and AAV9 in mice, and AAVrh.10, AAV9 and AAV2 in 100 healthy humans. Mice, injected-intravenously, raised significantly more anti-AAV9 than anti-AAVrh.10 IgG (immunoglobulins), and sera demonstrated greater neutralizing capacity, correspondingly. Antibody cross-binding studies in mice showed negligible cross-recognition between AAVrh.10, AAV9 and AAV2. In humans, IgG prevalence against the most common human serotype, AAV2, was 72%; AAV9, 47% and AAVrh.10, a surprising, 59%. Yet, neutralizing-antibody seroprevalences were 71% for AAV2, 18% for AAV9 and 21% for AAVrh.10. Thus, most anti-AAV9 and anti-AAVrh.10 IgG were nonneutralizing. Indeed, sera generally neutralized AAV2 more strongly than AAVrh.10. Further, all samples neutralizing AAVrh.10 or AAV9 also neutralized AAV2, suggesting antibody cross-recognition. This contrasts with the results in mice, and highlights the complexity of tailoring gene therapy to minimize the immune response in humans, when multiple-mixed infections during a lifetime evoke a broad repertoire of preexisting antibodies capable of cross reacting with non-human serotypes.