There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, which has infected more than three million people worldwide 1 . Approximately 20% of patients with COVID-19 develop severe disease and 5% of patients require intensive care 2 . Severe disease has been associated with changes in peripheral immune activity, including increased levels of pro-inflammatory cytokines 3,4 that may be produced by a subset of inflammatory monocytes 5,6 , lymphopenia 7,8 and T cell exhaustion 9,10 . To elucidate pathways in peripheral immune cells that might lead to immunopathology or protective immunity in severe COVID-19, we applied single-cell RNA sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) from seven patients hospitalized for COVID-19, four of whom had acute respiratory distress syndrome, and six healthy controls. We identify reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene signature, HLA class II downregulation and a developing neutrophil population that appears closely related to plasmablasts appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, we found that peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines. Collectively, we provide a cell atlas of the peripheral immune response to severe COVID-19.To profile the peripheral immune response to severe COVID-19, we performed Seq-Well-based 11,12 massively parallel single-cell RNA sequencing (scRNA-seq) on eight peripheral blood samples from seven hospitalized patients with polymerase chain reaction with reverse transcription (RT-PCR)-confirmed SARS-CoV-2 infection and six healthy controls. The demographics and clinical features of these patients are listed in Fig. 1a. The seven patients profiled were male, aged 20 to >80 years. We collected samples between 2 and 16 days following symptom onset; healthy controls were asymptomatic, four male and two female, and aged 30-50 years (Fig. 1a and Extended Data Fig. 1). Four of eight COVID-19 samples were collected from ventilated patients who were diagnosed with acute respiratory distress syndrome (ARDS; Fig. 1a). One patient (C1) was sampled twice: at nine days post-symptom onset while only requiring supplemental oxygen and at 11 days post-symptom onset following intubation. Three patients received azithromycin, which
Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-κB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity–associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.
Objective: Our objective was to investigate the mechanisms that govern natural killer (NK)-cell responses to HIV, with a focus on specific receptor--ligand interactions involved in HIV recognition by NK cells. Design and Methods: We first performed a mass cytometry-based screen of NK-cell receptor expression patterns in healthy controls and HIV+ individuals. We then focused mechanistic studies on the expression and function of T cell immunoreceptor with Ig and ITIM domains (TIGIT). Results: The mass cytometry screen revealed that TIGIT is upregulated on NK cells of untreated HIV+ women, but not in antiretroviral-treated women. TIGIT is an inhibitory receptor that is thought to mark exhausted NK cells; however, blocking TIGIT did not improve anti-HIV NK-cell responses. In fact, the TIGIT ligands CD112 and CD155 were not upregulated on CD4+ T cells in vitro or in vivo, providing an explanation for the lack of benefit from TIGIT blockade. TIGIT expression marked a unique subset of NK cells that express significantly higher levels of NK-cell-activating receptors (DNAM-1, NTB-A, 2B4, CD2) and exhibit a mature/adaptive phenotype (CD57hi, NKG2Chi, LILRB1hi, FcRγlo, Syklo). Furthermore, TIGIT+ NK cells had increased responses to mock-infected and HIV-infected autologous CD4+ T cells, and to PMA/ionomycin, cytokine stimulation and the K562 cancer cell line. Conclusion: TIGIT expression is increased on NK cells from untreated HIV+ individuals. Although TIGIT does not participate directly to the response to HIV-infected cells, it marks a population of mature/adaptive NK cells with increased functional responses.
In human and murine studies, IFN-γ is a critical mediator immunity to influenza. IFN-γ production is critical for viral clearance and the development of adaptive immune responses, yet excessive production of IFN-γ and other cytokines as part of a cytokine storm is associated with poor outcomes of influenza infection in humans. As NK cells are the main population of lung innate immune cells capable of producing IFN-γ early in infection, we set out to identify the drivers of the human NK cell IFN-γ response to influenza A viruses. We found that influenza triggers NK cells to secrete IFN-γ in the absence of T cells and in a manner dependent upon signaling from both cytokines and receptor-ligand interactions. Further, we discovered that the pandemic A/California/07/2009 (H1N1) strain elicits a seven-fold greater IFN-γ response than other strains tested, including a seasonal A/Victoria/361/2011 (H3N2) strain. These differential responses were independent of memory NK cells. Instead, we discovered that the A/Victoria/361/2011 influenza strain suppresses the NK cell IFN-γ response by downregulating NK-activating ligands CD112 and CD54 and by repressing the type I IFN response in a viral replication-dependent manner. In contrast, the A/California/07/2009 strain fails to repress the type I IFN response or to downregulate CD54 and CD112 to the same extent, which leads to the enhanced NK cell IFN-γ response. Our results indicate that influenza implements a strain-specific mechanism governing NK cell production of IFN-γ and identifies a previously unrecognized influenza innate immune evasion strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.