Advanced drug delivery systems (DDS) present indubitable benefits for drug administration. Over the past three decades, new approaches have been suggested for the development of novel carriers for drug delivery. In this review, we describe general concepts and emerging research in this field based on multidisciplinary approaches aimed at creating personalized treatment for a broad range of highly prevalent diseases (e.g., cancer and diabetes). This review is composed of two parts. The first part provides an overview on currently available drug delivery technologies including a brief history on the development of these systems and some of the research strategies applied. The second part provides information about the most advanced drug delivery devices using stimuli-responsive polymers. Their synthesis using controlled-living radical polymerization strategy is described. In a near future it is predictable the appearance of new effective tailor-made DDS, resulting from knowledge of different interdisciplinary sciences, in a perspective of creating personalized medical solutions.
Advances in gene therapy have been foreshadowing its potential for the treatment of a vast range of diseases involving genetic malfunctioning. However, its therapeutic efficiency and successful outcome are highly dependent on the development of the ideal gene delivery system. On that matter, silica-based vectors have diverted some attention from viral and other types of non-viral vectors due to their increased safety, easily modifiable structure and surface, high stability, and cost-effectiveness. The versatility of silane chemistry and the combination of silica with other materials, such as polymers, lipids, or inorganic particles, has resulted in the development of carriers with great loading capacities, ability to effectively protect and bind genetic material, targeted delivery, and stimuli-responsive release of cargos. Promising results have been obtained both in vitro and in vivo using these nanosystems as multifunctional platforms in different potential therapeutic areas, such as cancer or brain therapies, sometimes combined with imaging functions. Herein, the current advances in silica-based systems designed for gene therapy are reviewed, including their main properties, fabrication methods, surface modifications, and potential therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.