Mannosylation
of Lipid Nanoparticles (LNP) can potentially enhance uptake by Antigen
Presenting Cells, which are highly abundant in dermal tissues, to
improve the potency of Self Amplifying mRNA (SAM) vaccines in comparison
to the established unmodified LNP delivery system. In the current
studies, we evaluated mannosylated LNP (MLNP), which were obtained
by incorporation of a stable Mannose-cholesterol amine conjugate,
for the delivery of an influenza (hemagglutinin) encoded SAM vaccine
in mice, by both intramuscular and intradermal routes of administration.
SAM MLNP exhibited in vitro enhanced uptake in comparison
to unglycosylated LNP from bone marrow-derived dendritic cells, and in vivo more rapid onset of the antibody response, independent
of the route. The increased binding antibody levels also translated
into higher functional hemagglutinin inhibition titers, particularly
following intradermal administration. T cell assay on splenocytes
from immunized mice also showed an increase in antigen specific CD8+ T responses, following intradermal administration of MLNP
SAM vaccines. Induction of enhanced antigen specific CD4+ T cells, correlating with higher IgG2a antibody responses, was also
observed. Hence, the present work illustrates the benefit of mannosylation
of LNPs to achieve a faster immune response with SAM vaccines and
these observations could contribute to the development of novel skin
delivery systems for SAM vaccines.
Recent approval of mRNA vaccines to combat COVID-19 have highlighted the potential of this platform. Lipid nanoparticles (LNP) is the delivery vehicle of choice for mRNA as they prevent its enzymatic degradation by encapsulation. We have recently shown that surface exposition of mannose, incorporated in LNPs as stable cholesterol-amine conjugate, enhances the potency of self-amplifying RNA (SAM) replicon vaccines through augmented uptake by antigen presenting cells (APCs). Here, we generated a new set of LNPs whose surface was modified with mannans of different length (from mono to tetrasaccharide), in order to study the effect on antibody response of model SAM replicon encoding for the respiratory syncytial virus fusion F protein. Furthermore, the impact of the mannosylated liposomal delivery through intradermal as well as intramuscular routes was investigated. The vaccine priming response showed to improve consistently with increase in the chain length of mannoses; however, the booster dose response plateaued above the length of disaccharide. An increase in levels of IgG1 and IgG2a was observed for mannnosylated lipid nanoparticles (MLNPs) as compared to LNPs. This work confirms the potential of mannosylated SAM LNPs for both intramuscular and intradermal delivery, and highlights a disaccharide length as sufficient to ensure improved immunogenicity compared to the un-glycosylated delivery system.
According to a 2020 World Health Organization report (Globocan 2020), cancer was a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. The aim of anticancer therapy is to specifically inhibit the growth of cancer cells while sparing normal dividing cells. Conventional chemotherapy, radiotherapy and surgical treatments have often been plagued by the frequency and severity of side effects as well as severe patient discomfort. Cancer targeting by drug delivery systems, owing to their selective targeting, efficacy, biocompatibility and high drug payload, provides an attractive alternative treatment; however, there are technical, therapeutic, manufacturing and clinical barriers that limit their use. This article provides a brief review of the challenges of conventional anticancer therapies and anticancer drug targeting with a special focus on liposomal drug delivery systems.
Background
Exosomes are nanosized bio vesicles formed when multivesicular bodies and the plasma membrane merge and discharge into bodily fluids. They are well recognized for facilitating intercellular communication by transporting numerous biomolecules, including DNA, RNAs, proteins, and lipids, and have been implicated in varied diseases including cancer. Exosomes may be altered to transport a variety of therapeutic payloads, including as short interfering RNAs, antisense oligonucleotides, chemotherapeutic drugs, and immunological modulators, and can be directed to a specific target. Exosomes also possess the potential to act as a diagnostic biomarker in cancer, in addition to their therapeutic potential.
Conclusion
In this review, the physiological roles played by exosomes were summarized along with their biogenesis process. Different isolation techniques of exosomes including centrifugation-based, size-based, and polymer precipitation-based techniques have also been described in detail with a special focus on cancer therapeutic applications. The review also shed light on techniques of incubation of drugs with exosomes and their characterization methods covering the most advanced techniques. Myriad applications of exosomes in cancer as diagnostic biomarkers, drug delivery carriers, and chemoresistance-related issues have been discussed at length. Furthermore, a brief overview of exosome-based anti-cancer vaccines and a few prominent challenges concerning exosomal delivery have been concluded at the end.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.