Tumors develop multiple mechanisms of immune evasion as they progress, with some cancer types being inherently better at ‘hiding’ than others. With an increased understanding of tumor immune surveillance, immunotherapy has emerged as a promising treatment strategy for breast cancer, despite historically being thought of as an immunologically silent neoplasm. Some types of cancer, such as melanoma, bladder, and renal cell carcinoma, have demonstrated a durable response to immunotherapeutic intervention, however, breast neoplasms have not shown the same efficacy. The causes of breast cancer’s immune silence derive from mechanisms that diminish immune recognition and others that promote strong immunosuppression. It is the mechanisms of immune evasion in breast cancers that are poorly defined. Thus, further characterization is critical for the development of better therapies. This brief review will seek to provide insight into the possible causes of weak immunogenicity and immune suppression mediated by breast cancers and highlight current immunotherapies being used to restore immune responses to breast cancer.
The search for stromal biomarkers in carcinoma patients is a challenge in the field. Semaphorin 4D (Sema4D), known for its various developmental, physiological and pathological effects, plays a role in pro and anti-inflammatory responses. It is expressed in many epithelial tumors including head and neck squamous cell carcinoma (HNSCC). Recently, we found that HNSCC-associated Sema4D modulates an immune-suppressive, tumor-permissible environment by inducing the expansion of myeloid derived suppressor cells. The purpose of this study was to determine the value of Sema4D as a biomarker for the peri-tumoral stromal phenotype in human HNSCC. Our data showed Sema4D+ve/high tumor cells in 34% of the studied cohort with positive correlation to Stage III (p=0.0001). Sema4D+ve/high tumor cells correlated directly with dense fibrotic peri-tumoral stroma (p=0.0001) and inversely with infiltrate of Sema4D+ve/high tumor-associated inflammatory cells (TAIs) (p=0.01). Most of the Sema4D+ve/high TAIs were co-positive for the macrophage biomarker CD163. Knockdown of Sema4D in WSU-HN6 cells inhibited collagen production by fibroblasts, and decreased activated TGF-β1 levels in culture medium of HNSCC cell lines. In a stratification model of HNSCC using combined Sema4D and the programmed death ligand 1 (PDL-1), Sema4D+ve/high tumor cells represented a phenotype distinct from the PDL-1 positive tumors. Finally,Sema4D was detected in plasma of HNC patients at significantly higher levels (115.44, ± 39.37) compared to healthy donors (38.60± 12.73) (p <0.0001). In conclusion, we present a novel HNSCC tumor stratification model, based on the expression of the biomarker Sema4D. This model opens new avenues to novel targeted therapeutic strategies.
Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T-cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where Type II cells generally suppress tumor immunity while Type I NKT cells can enhance antitumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell targeted therapies for the treatment of cancer.
BackgroundHematopoietic stem cell transplantation (HSCT) is a new window to therapy of many diseases. From March 1991 through April 2011, a total of 3237 HSCT were performed in the Hematology-Oncology and Stem Cell Transplantation Research Center, affiliated to Tehran University of Medical Sciences. Here we report 20 years experience of HSCT.ObjectivesOur strategy and aim include the protraction of cytogenetic and molecular biological diagnostic tests, the expansion of the first Iranian Cord Blood Bank (ICBB) and development of the first Iranian Stem Cell Donor Program (ISCDP), and improvement the researches in new therapeutic fields.Patients and MethodsTotally, 3237 patients were undergone HSCT. Of these transplants, 2205 were allogeneic stem cell transplantation, 1016 autologous and 16 syngeneic. Among 2205 patients who were undergone allogenic-HSCT, 34 received cord blood stem cells as stem cell source for transplantation. It is important to point out that cord blood bank at our center provides reliable storage of cord blood stem cells for our patients. Stem cell transplantation was performed for treatment of various diseases such as acute myelogenous leukemia, acute lymphoblastic leukemia, chronic myelogenous leukemia, chronic lymphoblastic leukemia, beta-thalassemia major, sickle- cell thalassemia, sickle- cell disease, multiple myeloma, myelodysplasia, mucopolysaccharidosis, paroxysmal nocturnal hemoglobinuria, non-Hodgkin’s lymphoma, Hodgkin’s disease, severe aplastic anemia, plasma cell leukemia, Niemann-Pick disease, Fanconi anemia, severe combined immunodeficiency, congenital neutropenia, leukocyte adhesion deficiencies, Chediak-Higashi syndrome, osteopetrosis, histiocytosis X, Hurler syndrome, amyloidosis, systemic sclerosis, breast cancer, Ewing's sarcoma, testicular cancer, germ cell tumors, neuroblastoma, medulloblastoma, renal cell carcinoma, nasopharyngeal carcinoma, ovarian cancer, Wilms’ tumor, rhabdomyosarcoma, pancreatoblastoma, and multiple sclerosis. Also, we had 220 cellular therapies for post-myocardial infarction, multiple sclerosis, cirrhosis, head of femur necrosis, Diabetes Mellitus and GvHD treatment. 45 patients were undergone retransplantation in this center.ResultsAbout 78.2% of the patients (2530 of 3237) remained alive between one to 211 months after stem cell transplantation. Nearly, 21.8% (707) of our patients died after stem cell transplantation. The main causes of death were relapse, infection, hemorrhagic cystitis, graft-versus- host disease and etc.ConclusionsIn Iran, HSCT has been successfully adapted in routine clinical care. Recently, new methods such as double cord blood and haploidentical transplantation have been used to treat many life-threatening diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.