Production of biodiesel together with wastewater treatment and CO2 sequestration is a promising technology. The growing levels of carbon dioxide in the atmosphere increase the amount of dissolved CO2 in natural watercourses, triggering the increase in concentrations of bicarbonate and hydrogen ions while dropping those of carbonate and hydroxyl ions. The active carbon cycling in coastal areas, which can result in periodic and daily fluctuations in pH and CO2 concentrations that may surpass those anticipated for the extensive marine ecosystems, is regarded as one of the consequences of climate change. Studies were conducted to examine the effects of various pH levels on algal growth and lipid production in order to better understand how the growth of algae may be influenced in such conditions. In the present study, the influence of three different pH levels (6, 8, and 10) was studied to evaluate microalgae’s carbohydrate utilisation and lipid accumulation during the operation’s starvation phase (SP). Microalgae, in the study, were cultivated in two modes, namely mixotrophic [growth phase (GP)] and autotrophic [pH-induced (SP)] conditions. Enhancement in biomass formation, and intracellular carbohydrate accumulation were recorded during the GP operation, while noticeable lipid productivities (Total/neutral, 26.93/10.3%) were observed during SP operation at pH 8. Pigment analysis showed variations in both the procedures where higher Chl a concentration was noticed in GP, and higher Chl b was detected during SP. Nile red fluorescent staining strongly supports the existence of intracellular lipid bodies (LB). GC analysis of fatty acid methyl esters (FAME) showed the existence of a substantial amount of saturated fatty acids (SFA) compared with unsaturated fatty acids (USFA). Efficient wastewater treatment with nutrient assimilation was reported during the GP operation, demonstrating the phyco-remediation.
Background: Microalgae have several potential applications in early stages especially in the hatchery phase of several fish, mollusc and crustacean species. The present study aimed to evaluate the effects of microalgae Chlorella vulgaris at different concentrations on larval performances of Macrobrachium rosenbergii. Methods: Freshly hatched larvae were reared until the metamorphosis of first post larval (PL) stage in plastic aquaria (5 liter, 12ppt and 12L:12D) with a density of 10 larvae/liter under five randomly arranged treatment groups in 3 replicates such as, 0×105 (T1, control) and four different concentrations of C. vulgaris 5×105 (T2), 10×105 (T3), 15×105 (T4) and 20×105 (T5) cells/ml. Larvae were fed Artemia (6 nauplii/ml) six times daily. Result: The results revealed that the addition of microalgae in rearing system significantly enhanced (P less than 0.05) the larval survival and developments than without microalgae. The highest larval survival and faster appearance of PL (in days) was observed in T3 group (60.83%, 24.67 days) followed by T4 (56.91%, 28.33 days) T2 (48.39%, 31.33 days) T5 (40.93%, 32.33 days) and T1 (30.65%, 39 days), respectively. Larvae reared at moderate concentrations of microalgae (T3 and T4) resulted in high dry weight that of extreme low (T2) or high (T5) concentrations of microalgae. This study identified the best concentration of Chlorella vulgaris for the rearing of M. rosenbergii larval and could be applicable for the mass larval production of this species commercially.
Photoperiod and shelter have direct or indirect effects on phenotypic traits expression in different fish species. The present study was, therefore, intended to explore whether these light and shelter could influence some phenotypic traits of African catfish larvae under laboratory condition. Newly hatched larvae were stocked in plastic aquaria (10L) at a rate of 5 individuals/L and reared for one month under four treatments such as 24h light (24L), 24 h dark (24D), 12h light and 12h dark with PVC (12DL_PVC), and 12h light and 12h dark without PVC (12DL) conditions. A total of 108 larvae were sampled for phenotypic traits analysis. The results revealed that complete darkness (24D) significantly improved the overall growth parameters (total length, standard length, caudal peduncle length, anal fin length, caudal fin length, total body depth, dorsal fin length, pre dorsal distance, pre anal distance, pre ventral distance, head width, head length, eye diameter, maxillary barbell length, inter orbital length, and specific growth rate) than all other treatments, while no significant variation was found among other treatments. Although shelter did not show any significant role in the overall growth, it significantly reduced the larval mortality than those reared without shelter. The survival rates were also significantly different among various light regimes in which the highest was found in 24D (86%) followed by 12DL_PVC (74%), 24L (71%), and 12DL (60%). The study also revealed that larvae reared in 24D exhibited maximum dark brown body colouration (63%), while in 24L showed maximum light brown colouration (96%). On the other hand, maximum larvae were appeared as medium brown color (76%) in tanks having PVC, whereas many of them were light brown (61%) in non-PVC tanks. Taken together, the study suggests that C. gariepinus larvae should be reared in completely dark condition to enhance their overall production.
We investigated the developmental expression and localization of sf-1 and dax-1 transcripts in the brain of the juvenile orange-spotted grouper in response to steroidogenic enzyme gene at various developmental ages in relation to gonadal sex differentiation. The sf-1 transcripts were significantly higher from 110-dah (day after hatching) and gradually increased up to 150-dah. The dax-1 mRNA, on the other hand, showed a decreased expression during this period, in contrast to sf-1 expression. At the same time, the early brain had increased levels of steroidogenic gene (star). sf-1 and star hybridization signals were found to be increased in the ventromedial hypothalamus at 110-dah; however, dax-1 mRNA signals decreased in the early brain toward 150-dah. Furthermore, the exogenous estradiol upregulated star and sf-1 transcripts in the early brain of the grouper. These findings suggest that sf-1 and dax-1 may have an antagonistic expression pattern in the early brain during gonadal sex differentiation. Increased expression of steroidogenic gene together with sf-1 during gonadal differentiation strongly suggests that sf-1 may play an important role in the juvenile grouper brain steroidogenesis and brain development.
The neurohypophysial hormone arginine vasotocin (avt) and its receptor (avtr) regulates ions in the osmoregulatory organs of euryhaline black porgy (Acanthopagrus schlegelii). The localization of avt and avtr transcripts in the osmoregulatory organs has yet to be demonstrated. Thus, in the present study, we performed an in situ hybridization analysis to determine the localization of avt and avtr in the gills, kidneys, and intestines of the black porgy. The avt and avtr transcripts were identified in the filament and lamellae region of the gills in the black porgy. However, the basal membrane of the filament contained more avt and avtr transcripts. Fluorescence double tagging analysis revealed that avt and avtr mRNAs were partially co-localized with α-Nka-ir cells in the gill filament. The proximal tubules, distal tubules, and collecting duct of the kidney all had positive hybridization signals for the avt and avtr transcripts. Unlike the α-Nka immunoreactive cells, the avt and avtr transcripts were found on the basolateral surface of the distal convoluted tubule and in the entire cells of the proximal convoluted tubules of the black porgy kidney. In the intestine, the avt and avtr transcripts were found in the basolateral membrane of the enterocytes. Collectively, this study provides a summary of evidence suggesting that the neuropeptides avt and avtr with α-Nka-ir cells may have functions in the gills, kidneys, and intestines via ionocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.