The present study demonstrates the biocontrol potential of a plant growth-promoting bacterial strain using three different approaches: (i) an in vitro evaluation of antagonistic activity against important phytopathogenic fungi; (ii) an evaluation under greenhouse conditions with strawberry plants to assess the control of gray mold; and (iii) an in silico whole genome sequence mining to assign genetic features such as gene clusters or isolated genes to the strain activity. The in vitro assay showed that the B.BV10 strain presented antagonistic activity, inhibiting the mycelial growth in all the phytopathogenic fungi evaluated. The application of the Bacillus velezensis strain B.BV10 under greenhouse conditions reduced the presence of Botrytis cinerea and increased the mean fruit biomass. The genome of B.BV10 was estimated at 3,917,533 bp, with a GC content of 46.6% and 4088 coding DNA sequences, and was identified as B. velezensis. Biosynthetic gene clusters related to the synthesis of the molecules with antifungal activity were found in its genome. Genes related to the regulation/formation of biofilms, motility, and the important properties for the rhizospheric colonization were also found in the genome. The current study offers a comprehensive understanding of the genomic architecture and control activity of phytopathogenic fungi by the B. velezensis strain B.BV10 that may substantiate the industrialization of this strain in the future.
The development of bio-based products has increased in recent years, and species of the Bacillus genus have been widely used for product development due to their elevated production of antimicrobial molecules and resistance to extreme environmental conditions through endospore formation. In this context, the antifungal potential of Bacillus velezensis CMRP 4489 was investigated using in silico predictions of secondary metabolites in its genome and in vitro tests against the following phytopathogenic fungi: Sclerotinia sclerotiorum, Macrophomina phaseolina, and Botrytis cinerea. The in-silico predictions indicated that CMRP 4489 possesses several Biosynthetic Gene Clusters (BGCs) capable of producing molecules with antifungal properties and other non-identified BGCs. The in vitro assay results evidenced strong antifungal activity, inhibiting more than 60% of the tested fungi, and the isolate’s molecules were stable under diverse physicochemical conditions. The in vitro assay evidenced significant antifungal activity, deformation of the hyphal structure in SS, biofilm formation capacity, and swarming motility. In the colonization assay, we observed attachment, colonization, and net-shaped biofilm formation, with the strain transitioning from the seeds to nearby structures. Therefore, CMRP 4489 showed to be a potential biocontrol agent against various diseases with agronomic importance and can be used under adverse environmental conditions.
Brevibacillus brevis
LABIM17 is a bacterial isolate with biotechnological potential. Its draft genome sequence contains a chromosome of 5,950,202 bp, with 5,477 coding sequences, and exhibits 12 clusters involved in the production of secondary metabolites, which are likely responsible for its antimicrobial activity against several human and plant pathogens.
The development of bio-based products has increased on account of numerous factors, including environmental awareness, human health concerns, and the more frequent selection of resistant pathogens to synthetic products. Among the studied genera for product development are the species of the Bacillus genus due to their elevated production of molecules with antimicrobial activity and resistance to extreme environmental conditions through endospore formation. In this context, the antifungal potential of Bacillus velezensis strain CMRP 4489 was investigated using in silico predictions of secondary metabolites in its genome and in vitro tests against the following phytopathogenic fungi: Sclerotinia sclerotiorum (SS), Macrophomina phaseolina (MP), and Botrytis cinerea (BC). The in silico predictions indicated that CMRP 4489 possesses several Biosynthetic Gene Clusters (BGCs) capable of producing molecules with antifungal properties and other non-identified BGCs. The in vitro assay results evidenced strong antifungal activity, inhibiting more than 60% of the tested fungi, and the isolate’s molecules were stable under diverse physicochemical conditions. Therefore, CMRP 4489 showed to be a potential biocontrol agent against various diseases with agronomical importance and can be used under adverse environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.