Sporozoites of Eimeria tenella were incubated for 10, 20, or 30 min with parasite-specific monoclonal IgG antibody 3D3II from mice and then rinsed in a Tris-buffered glucose saline solution (TBGS). Some sporozoites were then incubated for 10, 20, or 30 min with ferritin- or colloidal gold-conjugated goat anti-mouse IgG antibody and then fixed in 2.5% glutaraldehyde and prepared for transmission (TEM) or scanning (SEM) electron microscopy. Other sporozoites that had been previously exposed to monoclonal antibody were prefixed with 0.25% glutaraldehyde, incubated with ferritin- or colloidal gold-conjugated anti-mouse IgG antibody and then fixed and prepared for TEM or SEM. Control preparations consisted of sporozoites exposed only to TBGS, monoclonal antibody 3D3II or to ferritin- or colloidal gold-conjugated anti-mouse IgG antibody. Capping of immune complexes occurred only on the surface of those sporozoites exposed to monoclonal antibody 3D3II followed by ferritin- or gold-conjugated antibody. Immune complexes moved laterally and posteriorly on the outer surface of the parasite plasma membrane to form a cap at the posterior end of the sporozoite. Capping did not occur in TBGS controls nor in sporozoites treated with monoclonal antibody 3D3II and prefixed in 0.25% glutaraldehyde before exposure to ferritin- or gold-conjugated antibody. Thus, capping of surface antigens did not occur in the presence of monoclonal 3D3II antibody only, whereas specimens exposed to both monoclonal and ferritin- or colloidal gold-conjugated antibodies were able to cap immune complexes.
Isomerization of a monoclonal antibody is one of the common routes of protein degradation. An isomerization in the complementarity-determining region (CDR) was found previously and is investigated in depth in this work. Affinity analysis proves that the antibody with one isomerized heavy chain has lower binding. Binding constants were determined, and exhibited a slower on-rate in conjunction with a faster off-rate for this isomerization. To determine the role of the buffer on the rate of isomerization, this antibody was incubated in various matrices and the amount of isomerized antibody was determined by hydrophobic interaction chromatography (HIC). The rate was found to be dependent on the pH as well as the net negative charge of the buffer components that can act as proton acceptors. An Arrhenius plot was performed to predict the levels of isomerization and a comparison of real samples proved the model was correct. This work affirms that isomerization in the CDR of a therapeutic antibody is important to monitor and the formulation buffer plays a significant role in the rate of the isomerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.