The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner -a problem that is best characterized in Alzheimer disease, where it begins pre-symptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by rescuing, protecting or normalizing brain energetics. Approaches described include restoring oxidative phosphorylation and glycolysis, improving insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Background and purpose: M 1 muscarinic ACh receptors (mAChRs) represent an attractive drug target for the treatment of cognitive deficits associated with diseases such as Alzheimer's disease and schizophrenia. However, the discovery of subtypeselective mAChR agonists has been hampered by the high degree of conservation of the orthosteric ACh-binding site among mAChR subtypes. The advent of functional screening assays has enabled the identification of agonists such as AC-42 (4-nbutyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine), which bind to an allosteric site and selectively activate the M 1 mAChR subtype. However, studies with this compound have been limited to recombinantly expressed mAChRs. Experimental approach: In this study, we have compared the pharmacological profile of AC-42 and a close structural analogue, 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone) at human recombinant, and rat native, mAChRs by calcium mobilization, inositol phosphate accumulation and both in vitro and in vivo electrophysiology. Key results: Calcium mobilization and inositol phosphate accumulation assays revealed that both AC-42 and 77-LH-28-1 display high selectivity to activate the M 1 mAChR over other mAChR subtypes. Furthermore, 77-LH-28-1, but not AC-42, acted as an agonist at rat hippocampal M 1 receptors, as demonstrated by its ability to increase cell firing and initiate gamma frequency network oscillations. Finally, 77-LH-28-1 stimulated cell firing in the rat hippocampus in vivo following subcutaneous administration. Conclusions and implications: These data suggest that 77-LH-28-1 is a potent, selective, bioavailable and brain-penetrant agonist at the M 1 mAChR and therefore that it represents a better tool than AC-42, with which to study the pharmacology of the M 1 mAChR. (2008) 154, 1104-1115 doi:10.1038/bjp.2008 published online 5 May 2008 Keywords: muscarinic receptors; selective agonist; allosteric; AC-42; 77-LH-28-1; calcium mobilization; inositol phosphate; cell firing; network oscillations There is a wide array of pharmacological tools with which to study mAChRs. For example, N-methyl scopolamine, quinuclidinylbenzilate, pirenzepine and darifenacin are among numerous mAChR antagonists, and ACh and oxotremorine-M among mAChR agonists, which have been used in unlabelled and radiolabelled forms to characterize the localization, pharmacology and function of mAChRs. Unfortunately, most of these pharmacological tools exhibit poor selectivity between mAChR subtypes (Caulfield and Birdsall, 1998;Ellis, 2002). Those agents that do display high degrees of mAChR subtype selectivity are few in number and when discovered are often shown to interact with an allosteric, rather than the orthosteric, site as exemplified by the highly selective M 1 receptor peptide antagonist MT-7 (muscarinic toxin 7; Olianas et al., 2000). British Journal of PharmacologyTherefore, the identification of selective M 1 mAChR agonists would represent a significant advance in mAChR pharmacology and could offer t...
)in96of106 neurones tested and in all 17 neurones tested the increase in activity (3.4 ± 1.1 to 7.0 ± 1.9 spikes s −1 ) was significantly attenuated (3.0 ± 0.9 to 3.8 ± 1.1 spikes s −1 ) by the selective 5-HT 3 receptor antagonist granisetron. Ionophoretic application of PBG potentiated responses to vagus nerve and cardiopulmonary afferent stimulation, and granisetron significantly attenuated this cardiopulmonary input (20.2 ± 5.7 to 10.6 ± 4.1 spikes burst −1 ) in 9 of 10 neurones tested. Ionophoretic application of AMPA and NMDA also excited NTS neurones and these excitations could be selectively antagonized by the non-NMDA and NMDA receptor antagonists DNQX and AP-5, respectively. At these selective currents, DNQX and AP-5 also attenuated PBG-and cardiopulmonary input-evoked increases in NTS activity. These data are consistent with the hypothesis that vagal inputs, including non-myelinated cardiopulmonary inputs to the NTS, utilize a 5-HT-containing pathway which activates 5-HT 3 receptors. This excitatory response to 5-HT 3 receptor activation may be partly a direct postsynaptic action but part may also be due to facilitation of the release of glutamate which in turn acts on either non-NMDA or NMDA receptors to evoke excitation.
Oligomeric forms of β-amyloid (Aβ) have potent neurotoxic activity and are the primary cause of neuronal injury and cell death in Alzheimer's disease (AD). Compounds that perturb oligomer formation or structure may therefore be therapeutic for AD. We previously reported that d-[(chGly)-(Tyr)-(chGly)-(chGly)-(mLeu)]-NH(2) (SEN304) is able to inhibit Aβ aggregation and toxicity, shown primarily by thioflavin T fluorescence and MTT (Kokkoni, N. et al. (2006) N-Methylated peptide inhibitors of β-amyloid aggregation and toxicity. Optimisation of inhibitor structure. Biochemistry 45, 9906-9918). Here we extensively characterize how SEN304 affects Aβ(1-42) aggregation and toxicity, using biophysical assays (thioflavin T, circular dichroism, SDS-PAGE, size exclusion chromatography, surface plasmon resonance, traveling wave ion mobility mass spectrometry, electron microscopy, ELISA), toxicity assays in cell culture (MTT and lactate dehydrogenase in human SH-SHY5Y cells, mouse neuronal cell death and synaptophysin) and long-term potentiation in a rat hippocampal brain slice. These data, with dose response curves, show that SEN304 is a powerful inhibitor of Aβ(1-42) toxicity, particularly effective at preventing Aβ inhibition of long-term potentiation. It can bind directly to Aβ(1-42), delay β-sheet formation and promote aggregation of toxic oligomers into a nontoxic form, with a different morphology that cannot bind thioflavin T. SEN304 appears to work by inducing aggregation, and hence removal, of Aβ oligomers. It is therefore a promising lead compound for Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.