The “hockey stick” shaped temperature reconstruction of Mann et al. (1998, 1999) has been widely applied. However it has not been previously noted in print that, prior to their principal components (PCs) analysis on tree ring networks, they carried out an unusual data transformation which strongly affects the resulting PCs. Their method, when tested on persistent red noise, nearly always produces a hockey stick shaped first principal component (PC1) and overstates the first eigenvalue. In the controversial 15th century period, the MBH98 method effectively selects only one species (bristlecone pine) into the critical North American PC1, making it implausible to describe it as the “dominant pattern of variance”. Through Monte Carlo analysis, we show that MBH98 benchmarks for significance of the Reduction of Error (RE) statistic are substantially under‐stated and, using a range of cross‐validation statistics, we show that the MBH98 15th century reconstruction lacks statistical significance.
The data set of proxies of past climate used in Mann, Bradley and Hughes (1998, "MBH98" hereafter) for the estimation of temperatures from 1400 to 1980 contains collation errors, unjustifiable truncation or extrapolation of source data, obsolete data, geographical location errors, incorrect calculation of principal components and other quality control defects. We detail these errors and defects. We then apply MBH98 methodology to the construction of a Northern Hemisphere average temperature index for the 1400-1980 period, using corrected and updated source data. The major finding is that the values in the early 15th century exceed any values in the 20th century. The particular "hockey stick" shape derived in the MBH98 proxy construction -a temperature index that decreases slightly between the early 15th century and early 20th century and then increases dramatically up to
Physical, mathematical and observational grounds are employed to show that there is no physically meaningful global temperature for the Earth in the context of the issue of global warming. While it is always possible to construct statistics for any given set of local temperature data, an infinite range of such statistics is mathematically permissible if physical principles provide no explicit basis for choosing among them. Distinct and equally valid statistical rules can and do show opposite trends when applied to the results of computations from physical models and real data in the atmosphere. A given temperature field can be interpreted as both "warming" and "cooling" simultaneously, making the concept of warming in the context of the issue of global warming physically ill-posed.
[1] Local land surface modification and variations in data quality affect temperature trends in surface-measured data. Such effects are considered extraneous for the purpose of measuring climate change, and providers of climate data must develop adjustments to filter them out. If done correctly, temperature trends in climate data should be uncorrelated with socioeconomic variables that determine these extraneous factors. This hypothesis can be tested, which is the main aim of this paper. Using a new database for all available land-based grid cells around the world we test the null hypothesis that the spatial pattern of temperature trends in a widely used gridded climate data set is independent of socioeconomic determinants of surface processes and data inhomogeneities. The hypothesis is strongly rejected (P = 7.1 Â 10 À14 ), indicating that extraneous (nonclimatic) signals contaminate gridded climate data. The patterns of contamination are detectable in both rich and poor countries and are relatively stronger in countries where real income is growing. We apply a battery of model specification tests to rule out spurious correlations and endogeneity bias. We conclude that the data contamination likely leads to an overstatement of actual trends over land. Using the regression model to filter the extraneous, nonclimatic effects reduces the estimated 1980-2002 global average temperature trend over land by about half.Citation: McKitrick, R. R., and P. J. Michaels (2007), Quantifying the influence of anthropogenic surface processes and inhomogeneities on gridded global climate data,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.