Recent ice sheet mass loss in Antarctica has been attributed to an influx of warm ocean waters, which drove grounding‐line retreat and ice thinning. Episodic retreat and rapid thinning also occurred in the southwestern Ross Sea during the Holocene, which today accommodates cold ocean waters. We applied finite element ice‐flow modeling to investigate the roles of ocean temperature and bed topography in the deglaciation of this region. First, our experiments demonstrate that bed topography controlled the spatial pattern of grounding‐line retreat. Topographic pinning points limited the rate of ice loss until retreat progressed beyond a bathymetric threshold. Second, ocean thermal forcing determined the timing of this ice loss. Enhanced ocean‐driven melt is required during the Early‐to‐Mid Holocene to replicate geological records of deglaciation, possibly indicating that warm ocean waters were once present in this region. On multi‐centennial timescales, ocean temperature drove, while bed topography controlled, nonlinear rates of ice mass loss.
Outlet glaciers drain the majority of ice flow in the Antarctic ice sheet. Theory and numerical models indicate that local bed topography can play a key role in modulating outlet glacier response to climate warming, potentially resulting in delayed, asynchronous, or enhanced retreat. However, the period of modern observations is too short to assess whether local or regional controls dominate ice sheet response on time scales that are critical for understanding ice sheet mass loss over this century and beyond. The recent geological past allows for insight into such centennial-scale ice sheet behavior. We present a cosmogenic surface-exposure chronology from Mawson Glacier, adjacent to a region of the Ross Sea that underwent dynamic marine-based ice sheet retreat following the Last Glacial Maximum. Our data record at least 220 m of abrupt ice thinning between 7.5 and 4.5 ka, followed by more gradual thinning until the last millennium. The timing, rates, and magnitudes of thinning at Mawson Glacier are remarkably similar to that documented 100 km to the south at Mackay Glacier. Together, both outlet glaciers demonstrate that abrupt deglaciation occurred across a broad region in the Mid-Holocene. This happened despite the complex bed topography of the western Ross Sea and implies an overarching external driver of retreat. When compared to regional sea-level and ocean-temperature changes, our data indicate that ocean warming most likely drove grounding-line retreat and ice drawdown, which then accelerated as a result of marine ice sheet instability.
Abstract. Quantitative satellite observations provide a comprehensive assessment of ice sheet mass loss over the last four decades, but limited insights into long-term drivers of ice sheet change. Geological records can extend the observational record and aid our understanding of ice sheet–climate interactions. Here we present the first millennial-scale reconstruction of David Glacier, the largest East Antarctic outlet glacier in Victoria Land. We use surface exposure dating of glacial erratics deposited on nunataks to reconstruct changes in ice surface elevation through time. We then use numerical modelling experiments to determine the drivers of glacial thinning. Thinning profiles derived from 45 10Be and 3He surface exposure ages show that David Glacier experienced rapid thinning up to 2 m/yr during the mid-Holocene (~ 6,500 years ago). Thinning stabilised at 6 kyr, suggesting initial formation of the Drygalski Ice Tongue at this time. Our work, along with terrestrial cosmogenic nuclide records from adjacent glaciers, shows simultaneous glacier thinning in this sector of the Transantarctic Mountains occurred ~ 3 kyr after the retreat of marine-based grounded ice in the western Ross Embayment. The timing and rapidity of the reconstructed thinning at David Glacier is similar to reconstructions in the Amundsen and Weddell embayments. In order to identify the potential causes of these rapid changes along the David Glacier, we use a glacier flow line model designed for calving glaciers and compare modelled results against our geological data. We show that glacier thinning and marine-based grounding line retreat is initiated by interactions between enhanced sub-ice shelf melting and reduced lateral buttressing, leading to Marine Ice Sheet Instability. Such rapid glacier thinning events are not captured in continental or sector-scale numerical modelling reconstructions for this period. Together, our chronology and modelling suggest a ~ 2,000-year period of dynamic thinning in the recent geological past.
Abstract. Quantitative satellite observations only provide an assessment of ice sheet mass loss over the last four decades. To assess long-term drivers of ice sheet change, geological records are needed. Here we present the first millennial-scale reconstruction of David Glacier, the largest East Antarctic outlet glacier in Victoria Land. To reconstruct changes in ice thickness, we use surface exposure ages of glacial erratics deposited on nunataks adjacent to fast-flowing sections of David Glacier. We then use numerical modelling experiments to determine the drivers of glacial thinning. Thinning profiles derived from 45 10Be and 3He surface exposure ages show David Glacier experienced rapid thinning of up to 2 m/yr during the mid-Holocene (∼ 6.5 ka). Thinning slowed at 6 ka, suggesting the initial formation of the Drygalski Ice Tongue at this time. Our work, along with ice thinning records from adjacent glaciers, shows simultaneous glacier thinning in this sector of the Transantarctic Mountains occurred 4–7 kyr after the peak period of ice thinning indicated in a suite of published ice sheet models. The timing and rapidity of the reconstructed thinning at David Glacier is similar to reconstructions in the Amundsen and Weddell embayments. To identify the drivers of glacier thinning along the David Glacier, we use a glacier flowline model designed for calving glaciers and compare modelled results against our geological data. We show that glacier thinning and marine-based grounding-line retreat are controlled by either enhanced sub-ice-shelf melting, reduced lateral buttressing or a combination of the two, leading to marine ice sheet instability. Such rapid glacier thinning events during the mid-Holocene are not fully captured in continental- or catchment-scale numerical modelling reconstructions. Together, our chronology and modelling identify and constrain the drivers of a ∼ 2000-year period of dynamic glacier thinning in the recent geological past.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.