We report the genome-wide mapping of ORC1 binding sites in mammals, by chromatin immunoprecipitation and parallel sequencing (ChIP-seq). ORC1 binding sites in HeLa cells were validated as active DNA replication origins (ORIs) using Repli-seq, a method that allows identification of ORI-containing regions by parallel sequencing of temporally ordered replicating DNA. ORC1 sites were universally associated with transcription start sites (TSSs) of coding or noncoding RNAs (ncRNAs). Transcription levels at the ORC1 sites directly correlated with replication timing, suggesting the existence of two classes of ORIs: those associated with moderate/high transcription levels ($1 RNA copy/cell), firing in early S and mapping to the TSSs of coding RNAs; and those associated with low transcription levels (<1 RNA copy/cell), firing throughout the entire S and mapping to TSSs of ncRNAs. These findings are compatible with a scenario whereby TSS expression levels influence the efficiency of ORC1 recruitment at G 1 and the probability of firing during S.[Supplemental material is available for this article.] DNA replication is a highly orchestrated process that ensures fidelity of genomes during duplications, as well as their adaptation to variations in cell division, DNA damage, and, in metazoa, chromatin changes associated with development and differentiation. It initiates from multiple chromosomal loci, called replication origins (ORIs), which are selected in the G 1 phase of the cell cycle by sequential recruitment of the origin recognition complex (ORC), CDC6, CDT1, and the MCM complex (the pre-replicative complex; pre-RC). Selected pre-RCs are then sequentially activated during the S phase, following a tight temporally ordered program (Mechali 2010).In Saccharomyces cerevisiae, ORIs contain a 12-bp consensus for ORC binding (Bell and Stillman 1992). Genome-wide analyses of ORIs by chromatin immunoprecipitation and parallel sequencing (ChIP-seq) using anti-ORC or -MCM antibodies showed that this consensus is essential but not sufficient for origin activity and identified other features that influence selection and replication timing, including transcription and/or chromatin structure (Eaton et al. 2010). In metazoa, instead, pre-RC does not exhibit sequence specificity, and the number of potential ORIs is considerably larger, following a process of selection that differs according to cell type, functional status, or stress conditions (Mechali 2010).These further levels of complexity allow DNA replication to adapt to the unique expression patterns of individual cell types. Little is known, however, about the regulation of ORI selection and replication timing in metazoa.
The identifi cation of genes maintaining cancer growth is critical to our understanding of tumorigenesis. We report the fi rst in vivo genetic screen of patient-derived tumors, using metastatic melanomas and targeting 236 chromatin genes by expression of specifi c shRNA libraries. Our screens revealed unprecedented numerosity of genes indispensable for tumor growth ( ∼ 50% of tested genes) and unexpected functional heterogeneity among patients (<15% in common). Notably, these genes were not activated by somatic mutations in the same patients and are therefore distinguished from mutated cancer driver genes. We analyzed underlying molecular mechanisms of one of the identifi ed genes, the Histone-lysine N-methyltransferase KMT2D , and showed that it promotes tumorigenesis by dysregulating a subset of transcriptional enhancers and target genes involved in cell migration. The assembly of enhancer genomic patterns by activated KMT2D was highly patient-specifi c, regardless of the identity of transcriptional targets, suggesting that KMT2D might be activated by distinct upstream signaling pathways. SIGNIFICANCE:Drug targeting of biologically relevant cancer-associated mutations is considered a critical strategy to control cancer growth. Our functional in vivo genetic screens of patient-derived tumors showed unprecedented numerosity and interpatient heterogeneity of genes that are essential for tumor growth, but not mutated, suggesting that multiple, patient-specifi c signaling pathways are activated in tumors. Cancer Discov;6(6);
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy for which there is still no effective therapy. In order to identify genetic alterations useful for a new treatment design, we used whole-exome sequencing to analyze 14 BPDCN patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program to be the most significantly undermined ( P <0.0001). In particular, twenty-five epigenetic modifiers were found mutated (e.g. ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and pathology tissue-chromatin immunoprecipitation sequencing experiments. The patients displayed enrichment in gene signatures regulated by methylation and modifiable by decitabine administration, shared common H3K27-acetylated regions, and had a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical BPDCN mouse model, established by CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5’-azacytidine and decitabine in controlling disease progression in vivo .
Obesity is associated with a higher risk of developing many cancer types including acute promyelocytic leukaemia (APL), a subset of acute myeloid leukemias (AML) characterized by expression of the PML-RARα oncogene. The molecular mechanisms linking obesity and APL development are not known. To model clinical observations, we established a mouse model of diet-induced obesity using transgenic mice constitutively expressing PML-RARΑ α in the hematopoietic system (PML-RARα KI mice) fed either standard (SD) or high-fat (HFD) diets. HFD-fed PML-RARα KI mice developed leukaemia with reduced latency and increased penetrance, as compared to SD-fed mice. HFD leads to accumulation of DNA damage in hematopoietic stem cells (HSCs), but, surprisingly, this was not associated with mutational load gain, as shown by whole genome/exome sequencing of pre-leukemic and leukemic cells. Importantly, very few of the observed mutations were predicted to act as cancer drivers, suggesting the relevance of nongenetic mechanisms. HFD led to an expansion of hematopoietic progenitor cells with a concomitant reduction in long-term hematopoietic stem cells, and in the presence of PML-RARα this was also accompanied by an enhancement of in vitro and in vivo self-renewal. Interestingly, Linoleic Acid (LA), abundant in HFD, recapitulates the effect of HFD on the self-renewal of PML-RARα HPCs by activating the peroxisome proliferator-activated receptor delta (PPARδ), a central regulator of fatty acid metabolism involved in the promotion of cancer progression. Our findings have implications for dietary or pharmacological interventions aimed at counteracting the cancer-promoting effect of obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.