We evaluated in anesthetized rabbits the compositional changes of plasmalemmal lipid microdomains from lung tissue samples after inducing pulmonary interstitial edema (0.5 ml/kg for 3 h, leading to approximately 5% increase in extravascular water). Lipid microdomains (lipid rafts and caveolae) were present in the detergent-resistant fraction (DRF) obtained after discontinuous sucrose density gradient. DRF was enriched in caveolin-1, flotillin, aquaporin-1, GM1, cholesterol, sphingomyelin, and phosphatidylserine, and their contents significantly increased in interstitial edema. The higher DRF content in caveolin, flotillin, and aquaporin-1 and of the ganglioside GM1 suggests an increase both in caveolar domains and in lipid rafts, respectively. Compositional changes could be ascribed to endothelial and epithelial cells that provide most of plasma membrane surface area in the air-blood barrier. Alterations in lipid components in the plasma membrane may reflect rearrangement of floating lipid platforms within the membrane and/or lipid translocation from intracellular stores. Lipid traffic could be stimulated by the marked increase in hydraulic interstitial pressure after initial water accumulation, from approximately -10 to 5 cmH2O, due to the low compliance of the pulmonary tissue, in particular in the basement membranes and in the interfibrillar substance. Compositional changes in lipid microdomains represent a sign of cellular activation and suggest the potential role of mechanotransduction in response to developing interstitial edema.
We studied responses of endothelial and epithelial cells in the thin portion of the air-blood barrier to a rise in interstitial pressure caused by an increase in extravascular water (interstitial edema) obtained in anesthetized rabbits receiving saline infusion (0.5 ml.kg(-1).min(-1) for 3 h). We obtained morphometric analyses of the cells and of their microenvironment (electron microscopy); furthermore, we also studied in lung tissue extracts the biochemical alterations of proteins responsible for signal transduction (PKC, caveolin-1) and cell-cell adhesion (CD31) and of proteins involved in membrane-to-cytoskeleton linkage (alpha-tubulin and beta-tubulin). In endothelial cells, we observed a folding of the plasma membrane with an increase in cell surface area, a doubling of plasmalemma vesicular density, and an increase in cell volume. Minor morphological changes were observed in epithelial cells. Edema did not affect the total plasmalemma amount of PKC, beta-tubulin, and caveolin-1, but alpha-tubulin and CD-31 increased. In edema, the distribution of these proteins changed between the detergent-resistant fraction of the plasma membrane (DRF, lipid microdomains) and the rest of the plasma membrane [high-density fractions (HDFs)]. PKC and tubulin isoforms shifted from the DRF to HDFs in edema, whereas caveolin-1 increased in DRF at the expense of a decrease in phosphorylated caveolin-1. The changes in cellular morphology and in plasma membrane composition suggest an early endothelial response to mechanical stimuli arising at the interstitial level subsequently to a modest (approximately 5%) increase in extravascular water.
The biochemical, signaling and morphological changes observed in lung endothelial cell exposed to hypoxia are opposite to those previously described in cardiogenic edema, suggesting a differential cellular response to either type of edema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.