Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.
We outline NMR protocols for site-specific mapping and time-resolved monitoring of protein phosphorylation reactions using purified kinases and mammalian cell extracts. These approaches are particularly amenable to intrinsically disordered proteins and unfolded, regulatory protein domains. We present examples for the ¹⁵N isotope-labeled N-terminal transactivation domain of human p53, which is either sequentially reacted with recombinant enzymes or directly added to mammalian cell extracts and phosphorylated by endogenous kinases. Phosphorylation reactions with purified enzymes are set up in minutes, whereas NMR samples in cell extracts are prepared within 1 h. Time-resolved NMR measurements are performed over minutes to hours depending on the activities of the probed kinases. Phosphorylation is quantitatively monitored with consecutive 2D ¹H-¹⁵N band-selective optimized-flip-angle short-transient (SOFAST)-heteronuclear multiple-quantum (HMQC) NMR experiments, which provide atomic-resolution insights into the phosphorylation levels of individual substrate residues and time-dependent changes thereof, thereby offering unique advantages over western blotting and mass spectrometry.
For the purpose of studying IDPs inside cells of higher organisms, several eukaryotic in-cell NMR systems have been developed over the past years. In this chapter we will focus on high-resolution in-cell NMR applications in Xenopus laevis oocytes, the first eukaryotic cellular model system to be established. In contrast to prokaryotic in-cell NMR samples, eukaryotic in-cell NMR specimens are prepared by cytoplasmic delivery of an exogenously produced, isotope-labeled protein into the non-isotope-labeled environment of the respective "host" cell. In-cell NMR applications in Xenopus oocytes rely on intracellular sample deposition by direct microinjection into the oocyte cytoplasm. Here, we describe the preparation of oocyte in-cell NMR samples for IDP studies in this cellular model environment.
Cell signaling is governed by dynamic changes in kinase and phosphatase activities, which are difficult to assess with discontinuous readout methods. Here, we introduce an NMR-based reporter approach to directly identify active kinases and phosphatases in complex physiological environments such as cell lysates and to measure their individual activities in a semicontinuous fashion. Multiplexed NMR profiling of reporter phosphorylation states provides unique advantages for kinase inhibitor studies and reveals reversible modulations of cellular enzyme activities under different metabolic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.