Mass releases of sterilized male insects, in the frame of sterile insect technique programs, have helped suppress insect pest populations since the 1950s. In the major horticultural pests Bactrocera dorsalis, Ceratitis capitata, and Zeugodacus cucurbitae, a key phenotype white pupae (wp) has been used for decades to selectively remove females before releases, yet the gene responsible remained unknown. Here, we use classical and modern genetic approaches to identify and functionally characterize causal wp− mutations in these distantly related fruit fly species. We find that the wp phenotype is produced by parallel mutations in a single, conserved gene. CRISPR/Cas9-mediated knockout of the wp gene leads to the rapid generation of white pupae strains in C. capitata and B. tryoni. The conserved phenotype and independent nature of wp− mutations suggest this technique can provide a generic approach to produce sexing strains in other major medical and agricultural insect pests.
The Mediterranean fruit fly Ceratitis capitata is a highly polyphagous and invasive insect pest, causing enormous economic damage in horticultural systems. A successful and environment-friendly control strategy is the sterile insect technique (SIT) that reduces pest populations through infertile matings with mass-released, sterilized insects. However, the SIT is not readily applicable to each pest species. While transgenic approaches hold great promise to improve critical aspects of the SIT to transfer it to new species, they are suspect to strict or even prohibitive legislation regarding the release of genetically modified (GM) organisms. In contrast, specific mutations created via CRISPR-Cas genome editing are not regulated as GM in the US, and might thus allow creating optimal strains for SIT. Here, we describe highly efficient homology-directed repair genome editing in C. capitata by injecting pre-assembled CRISPR-Cas9 ribonucleoprotein complexes using different guide RNAs and a short single-stranded oligodeoxynucleotide donor to convert an enhanced green fluorescent protein in C. capitata into a blue fluorescent protein. Six out of seven fertile and individually backcrossed G individuals generated 57-90% knock-in rate within their total offspring and 70-96% knock-in rate within their phenotypically mutant offspring. Based on the achieved efficiency, this approach could also be used to introduce mutations which do not produce a screenable phenotype and identify positive mutants with a reasonable workload. Furthermore, CRISPR-Cas HDR would allow to recreate mutations formerly identified in classical mutagenesis screens and to transfer them to related species to establish new (SIT-like) pest control systems. Considering the potential that CRISPR-induced alterations in organisms could be classified as non-GM in additional countries, such new strains could potentially be used for pest control applications without the need to struggle with GMO directives.
The Sterile Insect Technique (SIT) is based on the mass release of sterilized male insects to reduce the pest population size via infertile mating. Critical for all SIT programs is a conditional sexing strain to enable the cost-effective production of male-only populations. Compared to current female-elimination strategies based on killing or sex sorting, generating male-only offspring via sex conversion would be economically beneficial by doubling the male output. Temperature-sensitive mutations known from the D. melanogaster transformer-2 gene (tra2ts) induce sex conversion at restrictive temperatures, while regular breeding of mutant strains is possible at permissive temperatures. Since tra2 is a conserved sex determination gene in many Diptera, including the major agricultural pest Ceratitis capitata, it is a promising candidate for the creation of a conditional sex conversion strategy in this Tephritid. Here, CRISPR/Cas9 homology-directed repair was used to induce the D. melanogaster-specific tra2ts SNPs in Cctra2. 100% female to male conversion was successfully achieved in flies homozygous for the tra2ts2 mutation. However, it was not possible, to identify a permissive temperature for the mutation allowing the rearing of a tra2ts2 homozygous line, as lowering the temperature below 18.5 °C interferes with regular breeding of the flies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.