Targeting a tumor’s metabolic dependencies is a clinically actionable therapeutic approach; however, identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical tumor models to guide development of new drugs that restrict uptake or utilization of these nutrients. We describe a fast and dynamic approach to image fatty acid uptake in vivo and demonstrate its relevance to study both tumor metabolic reprogramming directly, as well as the effectiveness of drugs targeting lipid metabolism. Specifically, we developed a quantitative optical approach to spatially and longitudinally map the kinetics of long-chain fatty acid uptake in in vivo murine models of breast cancer using a fluorescently labeled palmitate molecule, Bodipy FL c16. We chose intra-vital microscopy of mammary tumor windows to validate our approach in two orthotopic breast cancer models: a MYC-overexpressing, transgenic, triple-negative breast cancer (TNBC) model and a murine model of the 4T1 family. Following injection, Bodipy FL c16 fluorescence increased and reached its maximum after approximately 30 min, with the signal remaining stable during the 30–80 min post-injection period. We used the fluorescence at 60 min (Bodipy60), the mid-point in the plateau region, as a summary parameter to quantify Bodipy FL c16 fluorescence in subsequent experiments. Using our imaging platform, we observed a two- to four-fold decrease in fatty acid uptake in response to the downregulation of the MYC oncogene, consistent with findings from in vitro metabolic assays. In contrast, our imaging studies report an increase in fatty acid uptake with tumor aggressiveness (6NR, 4T07, and 4T1), and uptake was significantly decreased after treatment with a fatty acid transport inhibitor, perphenazine, in both normal mammary pads and in the most aggressive 4T1 tumor model. Our approach fills an important gap between in vitro assays providing rich metabolic information at static time points and imaging approaches visualizing metabolism in whole organs at a reduced resolution.
Leveraging the unique surface expression of heat shock protein 90 (Hsp90) in breast cancer provides an exciting opportunity to develop rapid diagnostic tests at the point-of-care setting. Hsp90 has previously been shown to have elevated expression levels across all breast cancer receptor subtypes. We have developed a non-destructive strategy using HS-27, a fluorescently-tethered Hsp90 inhibitor, to assay surface Hsp90 expression on intact tissue specimens and validated our approach in clinical samples from breast cancer patients across estrogen receptor positive, Her2-overexpressing, and triple negative receptor subtypes. Utilizing a pre-clinical biopsy model, we optimized three imaging parameters that may affect the specificity of HS-27 based diagnostics – time between tissue excision and staining, agent incubation time, and agent dose, and translated our strategy to clinical breast cancer samples. Findings indicated that HS-27 florescence was highest in tumor tissue, followed by benign tissue, and finally followed by mammoplasty negative control samples. Interestingly, fluorescence in tumor samples was highest in Her2+ and triple negative subtypes, and inversely correlated with the presence of tumor infiltrating lymphocytes indicating that HS-27 fluorescence increases in aggressive breast cancer phenotypes. Development of a Gaussian support vector machine classifier based on HS-27 fluorescence features resulted in a sensitivity and specificity of 82% and 100% respectively when classifying tumor and benign conditions, setting the stage for rapid and automated tissue diagnosis at the point-of-care.
Objective and Impact Statement: We developed a generalized computational approach to design uniform, high-intensity excitation light for low-cost, quantitative fluorescence imaging of in vitro, ex vivo, and in vivo samples with a single device. Introduction: Fluorescence imaging is a ubiquitous tool for biomedical applications. Researchers extensively modify existing systems for tissue imaging, increasing the time and effort needed for translational research and thick tissue imaging. These modifications are application-specific, requiring new designs to scale across sample types. Methods: We implemented a computational model to simulate light propagation from multiple sources. Using a global optimization algorithm and a custom cost function, we determined the spatial positioning of optical fibers to generate 2 illumination profiles. These results were implemented to image core needle biopsies, preclinical mammary tumors, or tumor-derived organoids. Samples were stained with molecular probes and imaged with uniform and nonuniform illumination. Results: Simulation results were faithfully translated to benchtop systems. We demonstrated that uniform illumination increased the reliability of intraimage analysis compared to nonuniform illumination and was concordant with traditional histological findings. The computational approach was used to optimize the illumination geometry for the purposes of imaging 3 different fluorophores through a mammary window chamber model. Illumination specifically designed for intravital tumor imaging generated higher image contrast compared to the case in which illumination originally optimized for biopsy images was used. Conclusion: We demonstrate the significance of using a computationally designed illumination for in vitro, ex vivo, and in vivo fluorescence imaging. Application-specific illumination increased the reliability of intraimage analysis and enhanced the local contrast of biological features. This approach is generalizable across light sources, biological applications, and detectors.
Overexpression of heat shock protein 90 (Hsp90) on the surface of breast cancer cells makes it an attractive molecular biomarker for breast cancer diagnosis. Before a ubiquitous diagnostic method can be established, an understanding of the systematic errors in Hsp90-based imaging is essential. In this study, we investigated three factors that may influence the sensitivity of ex vivo Hsp90 molecular imaging: time-dependent tissue viability, nonspecific diffusion of an Hsp90 specific probe (HS-27), and contact-based imaging. These three factors will be important considerations when designing any diagnostic imaging strategy based on fluorescence imaging of a molecular target on tissue samples.
Targeting a tumor's metabolic dependencies is a clinically actionable therapeutic approach, but identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical models to aid in the development of new drugs to restrict uptake or utilization of these nutrients. We describe a fast and dynamic approach to image fatty acid uptake in vivo, a tool relevant to study tumor metabolic reprogramming or for studying the effectiveness of drugs targeting lipid metabolism spanning beyond breast cancer and optical imaging alone. Specifically, we developed a quantitative optical approach to spatially and longitudinally map the kinetics of long-chain fatty acid uptake in in vivo murine models of breast cancer using a fluorescently labeled palmitate molecule, Bodipy FL c16. We chose intra-vital microscopy of mammary tumor windows to validate our approach in two orthotopic breast cancer models: a MYC-overexpressing transgenic triple-negative breast cancer (TNBC) model and a murine model of the 4T1 family. Following injection, Bodipy FL c16 fluorescence increased and reached its maximum after approximately 30 minutes, with the signal remaining stable during the 30-80-minute post-injection period. We used the fluorescence at 60 minutes (Bodipy60), the mid-point in the plateau region, as a summary parameter to quantify Bodipy FL c16 fluorescence in subsequent experiments. Using our imaging platform, we observed a two- to four-fold decrease in fatty acid uptake in response to the downregulation of the MYC oncogene consistent with findings from in vitro metabolic assays. In contrast, our imaging studies report an increase in fatty acid uptake with tumor aggressiveness (6NR, 4T07, and 4T1), and uptake was significantly decreased after treatment with a fatty acid transport inhibitor, perphenazine, in both normal mammary pads and in the most aggressive 4T1 tumor model. Our approach fills an important gap between in vitro assays, which provide rich metabolic information but at static time points, and imaging approaches that can visualize metabolism in whole organs, but which suffer from poor resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.