This paper proposes a panel data generalization for a recently suggested IVfree estimation method that builds on joint estimation. The author shows how the method can be extended to linear panel models by combining fixed-effects transformations with the common GLS transformation to allow for heterogeneous intercepts. To account for between-regressor dependence, the author proposes determining the joint distribution of the error term and all explanatory variables using a Gaussian copula function, with the distinction that some variables are endogenous and the others are exogenous. The identification does not require any instrumental variables if the regressor-error relation is nonlinear. With a normally distributed error, nonnormally distributed endogenous regressors are therefore required. Monte Carlo simulations assess the finite sample performance of the proposed estimator and demonstrate its superiority to conventional instrumental variable estimation. A specific advantage of the proposed method is that the estimator is unbiased in dynamic panel models with small time dimensions and serially correlated errors; therefore, it is a useful alternative to GMM-style instrumentation. The practical applicability of the proposed method is demonstrated via an empirical example.
This study provides an assessment of the R&D-patent relation of European pharmaceutical firms that are not flawed by endogeneity biases. Firms invest in R&D and generate latent knowledge which then manifests in observable patent outcomes through a Poisson model. The process of turning R&D into knowledge is described by a production process subject to inefficiency and endogeneity. To estimate a Poisson stochastic frontier model, the suggested novel copula-based approach directly accounts for the dependence between the endogenous regressors and the inefficiency component. Hence, its implementation does not require any instrumental variables. Simulation results underline that the proposed estimator outperforms conventional instrumental variable estimators. Neglecting endogeneity leads to a substantial underestimation of the R&D elasticity of patents generated in the European pharmaceutical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.