Purpose To present the acceptance and the commissioning, to define the reference dose, and to prepare the reference data for a quality assessment (QA) program of an ultra‐high dose rate (UHDR) electron device in order to validate it for preclinical animal FLASH radiotherapy (FLASH RT) experiments and for FLASH RT clinical human protocols. Methods The Mobetron® device was evaluated with electron beams of 9 MeV in conventional (CONV) mode and of 6 and 9 MeV in UHDR mode (nominal energy). The acceptance was performed according to the acceptance protocol of the company. The commissioning consisted of determining the short‐ and long‐term stability of the device, the measurement of percent depth dose curves (PDDs) and profiles at two different positions (with two different dose per pulse regimen) and for different collimator sizes, and the evaluation of the variability of these parameters when changing the pulse width and pulse repetition frequency. Measurements were performed using a redundant and validated dosimetric strategy with alanine and radiochromic films, as well as Advanced Markus ionization chamber for some measurements. Results The acceptance tests were all within the tolerances of the company's acceptance protocol. The linearity with pulse width was within 1.5% in all cases. The pulse repetition frequency did not affect the delivered dose more than 2% in all cases but 90 Hz, for which the larger difference was 3.8%. The reference dosimetry showed a good agreement within the alanine and films with variations of 2.2% or less. The short‐term (resp. long‐term) stability was less than 1.0% (resp. 1.8%) and was the same in both CONV and UHDR modes. PDDs, profiles, and reference dosimetry were measured at two positions, providing data for two specific dose rates (about 9 Gy/pulse and 3 Gy/pulse). Maximal beam size was 4 and 6 cm at 90% isodose in the two positions tested. There was no difference between CONV and UHDR mode in the beam characteristics tested. Conclusions The device is commissioned for FLASH RT preclinical biological experiments as well as FLASH RT clinical human protocols.
To implement and validate a beam current transformer as a passive monitoring device on a pulsed electron beam medical linear accelerator (LINAC) for ultra-high dose rate (UHDR) irradiations in the operational range of at least 3 Gy to improve dosimetric procedures currently in use for FLASH radiotherapy (FLASH-RT) studies. Methods: Two beam current transformers (BCTs) were placed at the exit of a medical LINAC capable of UHDR irradiations. The BCTs were validated as monitoring devices by verifying beam parameters consistency between nominal values and measured values, determining the relationship between the charge measured and the absorbed dose, and checking the short-and long-term stability of the charge-absorbed dose ratio. Results:The beam parameters measured by the BCTs coincide with the nominal values. The charge-dose relationship was found to be linear and independent of pulse width and frequency. Short-and long-term stabilities were measured to be within acceptable limits. Conclusions: The BCTs were implemented and validated on a pulsed electron beam medical LINAC, thus improving current dosimetric procedures and allowing for a more complete analysis of beam characteristics. BCTs were shown to be a valid method for beam monitoring for UHDR (and therefore FLASH) experiments.
BackgroundBeam scanning is a useful technique for the treatment of large tumors when the primary beam size is limited, which is the case with radiation beams used in FLASH radiotherapy.PurposeTo optimize beam scanning as a dose delivery method for FLASH radiotherapy, it is necessary to first understand the effects of beam scanning on the FLASH effect. To do so, biological FLASH experiments need to be done using defined beam parameters with beam scanning and compared to the situation without beam scanning. In this regard, we propose implementation of a simple slit scanning system with an electron FLASH beam to obtain a scanned radiation field that closely resembles a static field.MethodsA pulsed electron linear accelerator (linac) was used in combination with a scanning slit system in order to simulate a scanned electron beam. Three configurations that produced homogeneous lateral profiles and high enough doses per pulse for FLASH experiments were established. The optimal scanning parameters were found for each configuration by examining the flatness of the obtained lateral dose profiles. Using the optimal scanning parameters, the scanned FLASH beams were dosimetrically characterized and compared to non‐scanned open field beam.ResultsA final electron FLASH beam scanning configuration was found for a 1 mm wide slit at a distance of 350 mm from the linac and a 2 mm wide slit at distances of 350 and 490 mm from the linac. The lateral profiles for these final configurations were found to have a homogeneity that is comparable to the open field profiles. The percentage depth dose (PDD) values found for these final configurations closely matched (by a few percentage) the PDD of the open field beam.ConclusionsThree electron FLASH beam scanning configurations achieved by the motorized slit system were found to produce radiation fields similar to a non‐scanned open field electron beam. These final configurations can therefore be used in future biological FLASH experiments to compare to non‐scanned beam experiments in order to optimize beam scanning as a technique permitting the treatment of larger tumors with FLASH radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.