The complexes of horse myoglobin (Mb) with the anionic surfactant sodium dodecyl sulfate (SDS), and with the cationic surfactants cetyltrimethylammonium chloride (CTAC) and decyltrimethylammonium bromide (DeTAB), have been studied by a combination of surface tension measurements and optical spectroscopy, including heme absorption and aromatic amino acid fluorescence. SDS interacts in a monomeric form with Mb, which suggests the existence of a specific binding site for SDS, and induces the formation of a hexacoordinated Mb heme, possibly involving the distal histidine. Fluorescence spectra display an increase of tryptophan emission. Both effects point to an increased protein flexibility. SDS micelles induce both the appearance of two more heme species, one of which has the features of free heme, and protein unfolding. Mb/CTAC complexes display a very different behavior. CTAC monomers have no effect on the absorption spectra, and only a slight effect on the fluorescence spectra, whereas the formation of CTAC aggregates on the protein strongly affects both absorption and fluorescence. Mb/DeTAB complexes behave in a very similar way as Mb/CTAC complexes. The surface activity of the different Mb/surfactant complexes, as well as the interactions between the surfactants and Mb, are discussed on the basis of their structural properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.