The bone and fat interface is implicated in the pathogenesis of postmenopausal osteoporosis. The association between circulating omentin-1 levels and bone mineral density (BMD) in postmenopausal women has never been assessed. A total of 382 healthy postmenopausal women were randomly selected. Omentin-1, visfatin, adiponectin, the receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin, high sensitivity C-reactive protein, degradation products of C-terminal telopeptides of type I collagen, and osteocalcin were measured by highly specific enzyme-linked immunosorbent assay methods. BMD was determined for the lumbar spine (L2-L4) and the proximal femur using dual-energy X-ray absorptiometry. In multivariable-adjusted linear regression, serum omentin-1 levels were inversely correlated with BMD at the lumbar spine (β =−0.11, p= 0.020). In multiple regression analyses, serum visfatin and adiponectin levels were not significantly correlated with BMD at different skeletal sites after controlling for age, body mass index, and bone-related markers. However, the highest quartile of adiponectin compared to the lowest quartile, after adjusting for potential confounders, revealed an inverse association with BMD in the lumbar spine (β=−0.19, p=0.010). In conclusion, circulating omentin-1 levels had an inverse correlation with BMD at the lumbar spine in Iranian postmenopausal women. To further understand the role of omentin-1 in bone and mineral metabolism, large-scale longitudinal studies focusing on BMD and osteoporotic fractures are warranted.
Although it has been shown that osteocalcin functions as a hormone in the regulation of glucose metabolism and fat mass, no population-based study to date has addressed serum osteocalcin levels in relation to energy metabolism concurrent with bone metabolism in postmenopausal women. In a population-based study, cardiovascular risk factors, high-sensitivity C-reactive protein (hs-CRP), osteoprotegerin, receptor activator of nuclear factor-κB ligand, osteocalcin, CrossLaps, alkaline phosphatase, and bone mineral density (BMD) at the lumbar spine (L2-L4) and the proximal femur were measured in 382 Iranian postmenopausal women. In multiple logistic regression analysis, lower osteocalcin and CrossLaps levels were associated with a higher odds ratio (OR) of having type 2 diabetes mellitus when adjustments were made for age, hs-CRP, cardiovascular risk factors, BMD, and markers of bone metabolism [OR 5.17, CI (2.66-10.04), p < 0.0001 and OR 2.51, CI (1.37-4.61), p = 0.003, respectively]. However, lower alkaline phosphatase levels were associated with a lower OR of having type 2 diabetes mellitus [OR 0.28, CI (0.15-0.52), p < 0.0001] in regression analysis. No significant difference was found between serum osteocalcin levels of those with and without metabolic syndrome. Among the metabolic syndrome components, low osteocalcin levels had significant associations with elevated blood glucose [OR 1.89, CI (1.16-3.07), p = 0.010] and elevated waist circumference [OR 2.53, CI (1.13-5.67), p = 0.024] in multivariate analyses. In conclusion, serum osteocalcin was independently associated with glucose intolerance and abdominal obesity as the components of metabolic syndrome and type 2 diabetes mellitus in postmenopausal women. Since CrossLaps and alkaline phosphatase levels were independently associated with the presence of type 2 diabetes mellitus, the unique contribution of osteocalcin in glucose metabolism could not be concluded.
Long intergenic noncoding RNA p21 was mapped on the human chromosome 6p21.2. Accordingly, it was firstly described by promoting the p53-dependent apoptosis in the mouse. Also, it is a new lncRNA playing some vital roles in the cell cycle, apoptosis, cell proliferation, tumorigenesis, invasion, metastasis, and angiogenesis. In this regard, it was shown that, lincRNA-p21 regulates these biological processes involved in carcinogenesis through various signaling pathways including Notch signaling, JAK2/STAT3, and AKT/mTOR pathways. Another mechanism by that lincRNA-p21 can affect these processes is a cross-talk with different miRNAs. In vitro and in vivo studies revealed dysregulation of lincRNA-p21 in various human cancers. In addition, emerging evidence demonstrated that, lincRNA-p21 can be considered as a potential prognostic and therapeutic biomarker in cancers. Also, lincRNA-p21 enhances the response to radiotherapy for colorectal cancer. However, the molecular mechanisms of lincRNA-p21 in carcinogenesis have not been fully elucidated so far. So, this review summarizes the function of lincRNA-p21, as a tumor suppressor factor in different biological processes implicated in cancers.
BackgroundEpidemiological studies on genital human papilloma viruses infection (HPVs) in general population are crucial for the implementation of health policy guidelines for developing the strategies to prevent the primary and secondary cervical cancer. In different parts of Iran, there is a lack of population-based studies to determine the prevalence of HPV in the general population. The aim of this population-based study is to compare the prevalence rate of genital HPV infection among reproductive women with our previous clinic-based data, which showed a prevalence rate of 5% in women in southern Iran.ResultsUsing general primers for all genotypes of HPV, of 799 randomly selected women, five (0.63%, 95% CI 0.23-1.55%) tested positive for HPV DNA. Overall, seven different HPV genotypes were detected: six types (16, 18, 31, 33, 51 and 56) were carcinogenic, or “high risk genotypes” and one genotype (HPV-66) was “probably carcinogenic.”ConclusionsIn a population-based study, the prevalence of HPV infection among southern Iranian women was lower than that observed worldwide. However, our gynaecological clinic-based study on the prevalence of HPV infection showed results comparable with other studies in the Middle East and Persian Gulf countries. Since gynaecological clinic-based data may generally overestimate HPV prevalence, estimates of prevalence according to clinic-based data should be adjusted downward by the population-based survey estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.