Free fatty acid (FFA), diacyiglycerol (acyl2-Gro), icosanoid, phospholipid, and cholesterol levels were measured in samples of cat spinal cord (L2) that were frozen in situ (i) with vertebrae intact, (ii) at various times after laminectomy, and (iu) at various times after laminectomy with compression trauma to the spinal cord. Tissue samples either were grossly dissected into gray and white portions prior to FFA and acyl2Gro analysis or were used whole for the other lipid types. Gray matter total FFA and acyl2Gro values were abnormally high in samples frozen with vertebrae intact and in those frozen 10 min after laminectomy. This indicates that the surgical procedures resulted in some perturbation of spinal cord lipid metabolism. If the experimental animals were allowed to recover for 90 min after laminectomy, the gray matter FFA and acyl2Gro levels were greatly reduced. Compression of the spinal cord with a 170-g weight for 1, 3, or 5mm (following 90 min of recovery after laminectomy) caused significant elevations of total FFA, acyl2Gro, icosanoids, and phosphatidic acid and significant decreases in ethalamine plasmalogens and cholesterol. Among the total FFA, arachidonic acid was found to have the largest relative increase. Comparisons of gray and white matter demonstrate that, in general, changes in white matter FFA and acyl2Gro were similar to those seen in gray matter. However, the increases in white matter levels of FFA and acyl2Gro were delayed, occurring after the elevations in gray matter. For some FFA (e.g., arachidonate), the rise in white matter occurred as gray matter levels were decreasing. This suggests that the initial alteration in spinal cord lipid metabolism after trauma was in gray matter but, with time, spread radially into white matter.
Compression trauma of the cat spinal cord induces a very rapid alteration in the lipid metabolism of cellular membranes, including lipid hydrolysis with release of fatty acids including arachidonate, production of biologically active eicosanoids, and loss of cholesterol. This disturbance of cellular membranes can directly damage cells and can lead to the secondary development of tissue ionic imbalance, ischemia, edema, and inflammation with neuronophagia. Pretreatment with either the synthetic glucocorticoid methylprednisolone sodium succinate (MPSS) or the antioxidants vitamin E and selenium (Se) completely prevented the loss of cholesterol and partially inhibited lipolysis and prostanoid production. Treatment with MPSS significantly reduced the postinjury tissue necrosis and paralysis. Preliminary evidence indicates that pretreatment with vitamin E and Se also protected against the effects of spinal cord injury (SCI). We speculate that the ability of these agents to preserve function after SCI may, in part, reside in their capacity to limit the trauma-induced changes in lipid metabolism.
Traumatic injury of the spinal cord leads to a series of pathological events that result in tissue necrosis and paralysis. Among the earliest biochemical reactions are hydrolysis of fatty acids from membrane phospholipids, production of biologically active eicosanoids, and peroxidation of lipids. This study examines the effect of agents purported to improve recovery following spinal cord trauma, methylprednisolone sodium succinate (MPSS) and the combination of alpha-tocopherol and selenium (Se), on the posttraumatic alterations of membrane lipid metabolism. Pretreatment with either MPSS or alpha-tocopherol and Se reduced the trauma-induced release of total FFA including arachidonate in the injured spinal cord tissue. In addition, these agents decreased the postinjury levels of prostanoids. Pretreatment with either MPSS or alpha-tocopherol and Se also completely prevented the trauma-induced loss of cholesterol while inhibiting the increase of a cholesterol peroxidation product, 25-hydroxycholesterol. These data suggest that: perturbation of membrane lipid metabolism may contribute to the tissue necrosis and functional deficit of spinal cord injury and MPSS or the combination of alpha-tocopherol and Se may protect injured spinal cord tissue, at least in part, by limiting these posttraumatic membrane lipid changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.