Purpose: This research is devoted to designing the synthesis of sulfanyl-substituted 3,5-dimethylisoxazoles, which contain structural analogues of the SAM drug in the molecule. SAM (S-adenosyl-L-methionine), formed in the biosynthetic process, is used as an effective hepatoprotective drug. Complexation and hepatoprotective properties of the combinatorial series of bis(isoxazolylsulfanyl)ethane have been studied.Methods: Bis(isoxazol-4-ylmethylsulfanyl)alkanes were synthesized using the one-pot method. The structures of compounds were established by one-dimensional (1H,13C) and two-dimensional (COSY, HCQS, HMBC) NMR spectroscopy, mass-spectrometry and X-ray diffraction. The biological activity of the combinatorial series of sulfanyl derivatives of diketones, azoles and their metal complexes has been studied by in vivo method. Simulation of the animal associated processes was carried out in accordance with the principles of bioethics. Screening studies of hepatoprotective activity were carried out in a model of acute CC14 intoxication after a single injection intraperitoneally as a 50% solution in olive oil. The pharmacologically known hepatoprotective drug SAM served as a control.Results: Two-step synthesis of novel α,ω-bis(isoxazol-4-ylmethylsulfanyl)alkanes was carried out via the multicomponent reaction between 2,4-pentandione, CH2O and α,ω-dithiols, then the resulting α,ω-bis(1,3-diketone-2-ylmethylsulfanyl)alkanes were transformed by hydroxyl amine to obtain bis-isoxasole derivatives. Promising precursor 1,2-bis(isoxazol-4-ylmethylsulfanyl)ethane was converted to metal complexes by interaction with PdCl2 or CuCl. The obtained compounds were found to be practically non-toxic compounds (1001 – 3000 mg/kg) according to the classification of K.K. Sidorov, but copper complex refers to low-toxic compounds substances (165 mg/kg). Compounds of sulfanyl ethane series demonstrate hepatoprotective activity.Conclusion: Palladium(II) complex being almost non-toxic possesses hepatoprotective activity comparable to the drug like SAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.