Virtual Auditory Space (VAS) refers to the synthesis and simulation of spatial hearing using earphones and/or a speaker system. High-fidelity VAS requires the use of individualized head-related transfer functions (HRTFs) which describe the acoustic filtering properties of the listener's external auditory periphery. HRTFs serve the increasingly dominant role of implementation 3-D audio systems, which have been realized in some commercial applications. However, the cost of a 3-D audio system cannot be brought down because the efficiency of computation, the size of memory, and the synthesis of unmeasured HRTFs remain to be made better. Because HRTFs are unique for each user depending on his morphology, the economically realist synthesis of individualized HRTFs has to rely on some measurements. This paper presents a way to reduce the cost of a 3-D audio system using a statistical modeling which allows to use only few measurements for each user.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.