<span>Local area network (LAN) as Bluetooth, WiFi and ZigBee are well established technology. The biggest problem with many LAN is the battery consumption and short ranges link budgets. LoRa is a new, private, unlicensed and spread spectrum modulation technique which allows sending low rates at extremely long ranges with minimal power consumption. More importantly, there is no access fee associated with this type of wireless technology. The main idea behind this work is to conduct performance and capability analysis of a currently available LoRa transceiver. We develop a location monitoring system using LoRa and global positioning system (GPS) module and we analyze the detectable range of its data, its battery consumption as well as received signal strength indicator (RSSI). Our deployment experiment demonstrates that the sy<span>stem is able to detect the transmitted data within 290 meters of distances. Using 6 volts of battery AA, the transmission of data still occurred after 24 hours</span>. <span>This project is emphasized a location monitoring system that provide low power usage</span> but long range.</span>
This paper presents a practical control strategy for motion control of a pneumatic muscle actuated the system. Pneumatic artificial muscle (PAM) exhibits strong nonlinear characteristics which are difficult to be modeled precisely, and these characteristics have led to low controllability and difficult to achieve high precision control performance. This paper aims to propose nominal characteristic trajectory following (NCTF) control system, which emphasizes simple design procedure without the need of exact model parameters, and yet is able to demonstrate high performance in both point-to-point and continuous motions. However, the conventional NCTF controller does not offer a promising positioning performance with the PAM mechanisms, where it exhibits large vibration in the steady state before the mechanism stopping and tends to reduce the motion accuracy. Therefore, the objective of this study is to improve the conventional NCTF controller by removing the actual velocity feedback to eliminate vibration problem, added an acceleration feedback compensator to the plant model, and a reference rate feedforward to solve low damping characteristic of the PAM mechanism simultaneously improve tracking following characteristic. The design procedure of the improved NCTF controller remains easy and straightforward. The effectiveness of the proposed controller is verified experimentally and compared with the conventional NCTF and classical PI controllers in the performances of positioning and continuous motion. The improved NCTF controller reduces the positioning error up to 90% and 63% as benchmarked to the PI and conventional NCTF controllers, respectively, while it reduces up to 92% (PI) and 95% (NCTF) in the tracking error. INDEX TERMS Motion control, NCTF control, nonlinear system, pneumatic artificial muscle, practical controller.
Conventionally, a stove had been used to cook and boil. The stove commonly used gasses and charcoals as the fuel element to contribute the heat for cooking. However, the gasses used such as Liquefied Petroleum Gas (LPG) is an extremely flammable gas that commonly contribute to fire while charcoals contribute largely of carbon after the charcoal burning process during cooking. In addition, these stoves are also difficult to control the flame. Therefore, a portable stove operating using Peltier effect is developed and focuses on the development of a portable stove that operates by using a Peltier to provide heat and evaluate the heating control by PID Controller. The stove is developed to evaluate the performance of Peltier Effect in order to replace the LP as a heating element. The minimum operating voltage for the Peltier Effect heating system is specify to be 10.1V, and the maximum is 12.6V, therefore if the supply is lower than the minimum threshold the Peltier will auto shut down. The number of Peltier module and type of Peltier module connection are varied to evaluate the heating performance and power consumption. The controller algorithm, Proportional Integral Derivative (PID) controller parameters are optimized to control the temperature of heating or cooling when the temperature is being adjusted to its set point.
In constant V/f control technique it is assume that the stator resistance and leakage inductance drops are negligible, especially at high speed and small load. In other words, the back emf is comparatively large at high speed and hence these voltage drops can be neglected. By maintaining constant V/f, constant Eg/f and hence constant air-gap flux is assumed. This assumption is however invalid at low speeds since a significant voltage drop appears across the stator impedance. The terminal voltage, V no longer approximates ag. By using MATLAB Simulink, the open-loop constant V/f is simulated. It is shown that the performance of the drive deteriorates at low speeds. The improvement in the performance by applying voltage boost is shown and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.