K-Means is a data mining algorithm that can be used to grouping or clustering data. This research using k-means for clustering the data of motorcycle based on consumer needs. The dataset used in this research is Honda and Yamaha motorcycle which taken from the dialers in Dewantara District, Aceh. The data tested by grouping 300 data of motorcycle with different attributes into 3 clusters, which are cheap, normal, and expensive. The distribution of the data we separate it using 45 data in 15 times of test. Each test used 3 different data randomly selected on each test. To calculate the distance of each motorcycle data that have been inputted to each centroid, we used the Euclidean Distance formula. Data in this cluster system can be used as a recommendation for users in selecting the motorcycle that they interest the most. The results of the performance on each test finished in 15 times shown that the average value of Precision by 76%, Recall by 76% and the accuracy by 81%.
Data Mining merupakan proses ekstraksi data menjadi informasi yang memungkinkan para pengguna untuk mengakses secara cepat data dengan jumlah yang besar, dengan teknik yang tepat proses data mining akan memberikan hasil yang optimal [1]. Setiap data pada data mining terdiri dari kelas tertentu bersama dengan variabel dan faktor-faktor penentu kelas variabel tersebut. Dengan data mining, peneliti dapat menentukan suatu kelas dari variabel data yang dimiliki[2]. Salah satu tujuan yang banyak dihasilkan dalam data mining adalah klasifikasi[3]. Menurut Abdillah (2018), klasifikasi merupakan penggolongan atau pengelompokan fungsi yang menjelaskan atau membedakan konsep atau kelas data, dengan tujuan untuk memperkirakan kelas dari suatu objek yang labelnya belum diketahui atau pembagian sesuatu menurut kelas-kelas nya. Metode-metode klasifikasi data INFORMASI ARTIKEL
With k-medoids algorithm, it often takes many iterations to cluster a large dataset, that is, the k-medoids algorithm cannot achieve the optimal performance. Based on cluster validity, this paper tries to optimize the clustering performance of k-medoids algorithm, using the purity algorithm. Specifically, the medoids value was determined by the purity value, and cluster validity was measured with the Davies Bouldin Index (DBI) on the Iris Dataset and the Death/Birth Rate Dataset. The results show that the cluster validity of the proposed purity k-medoids algorithm was better than the conventional k-medoids algorithm. The conventional k-medoids converged in an average of 8.7 iterations on the Death Birth Rate Dataset and 13.2 on the Iris Dataset. By contrast, the purity k-medoids algorithm only needed 2 iterations on either dataset. Therefore, the purity k-medoids algorithm can effectively minimize the number of iterations in the clustering of large datasets.
Pada penelitian ini diimplementasikan algoritma K-Nearest Neighbor dalam pengklasifikasian Sekolah Menengah Pertama/Sederajat berdasarkan peminatan calon siswa. Tujuan penelitian ini adalah untuk memudahkan pengguna dalam menemukan sekolah SMP/sederajat berdasarkan 8 kriteria sekolah yaitu akreditasi, fasilitas ruangan, fasilitas olah raga, laboratorium, ekstrakulikuler, biaya, tingkatan kelas dan waktu belajar. Adapun data yang digunakan dalam penelitian ini didapatkan dari Dinas Pendidikan Pemuda dan Olahraga Kabupaten Bireuen. Hasil penelitian dengan menggunakan K-NN dan pendekatan Euclidean Distance dengan k=3, diperoleh nilai precision sebesar 63,67%, recall 68,95% dan accuracy sebesar 79,33% .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.