Purpose: This study assessed the safety and efficacy of SHR-1210 (anti-PD-1 antibody) and apatinib (VEGFR2 inhibitor) as combination therapy in patients with advanced hepatocellular carcinoma (HCC), gastric, or esophagogastric junction cancer (GC/EGJC). Patients and Methods: This was an open-label, doseescalation (phase Ia) and expansion study (phase Ib). In phase Ia, patients (n ¼ 15) received SHR-1210 200 mg every 2 weeks and apatinib 125-500 mg once daily until unacceptable toxicity or disease progression. In phase Ib, patients (n ¼ 28) received apatinib at the phase Ia-identified recommended phase II dose (RP2D) plus SHR-1210. The primary objectives were safety and tolerability and RP2D determination. Results: At data cutoff, 43 patients were enrolled. In phase Ia, four dose-limiting toxicity events were observed (26.7%): one grade 3 lipase elevation (6.7%) in the apatinib 250 mg cohort and three grade 3 pneumonitis events (20%) in the apatinib 500 mg cohort. The maximum tolerated RP2D for apatinib was 250 mg. Of the 33 patients treated with the R2PD combination, 20 (60.6%) experienced a grade !3 treatmentrelated adverse event; adverse events in !10% of patients were hypertension (15.2%) and increased aspartate aminotransferase (15.2%). The objective response rate in 39 evaluable patients was 30.8% (95% CI: 17.0%-47.6%). Eight of 16 evaluable HCC patients achieved a partial response (50.0%, 95% CI: 24.7%-75.4%). Conclusions: SHR-1210 and apatinib combination therapy demonstrated manageable toxicity in patients with HCC and GC/EGJC at recommended single-agent doses of both drugs. The RP2D for apatinib as combination therapy was 250 mg, which showed encouraging clinical activity in patients with advanced HCC.
BackgroundMounting evidence suggests a causal relationship between specific bacterial infections and the development of certain malignancies. However, the possible role of the keystone periodontal pathogen, Porphyromonas gingivalis, in esophageal squamous cell carcinoma (ESCC) remains unknown. Therefore, we examined the presence of P. gingivalis in esophageal mucosa, and the relationship between P. gingivalis infection and the diagnosis and prognosis of ESCC.MethodsThe presence of P. gingivalis in the esophageal tissues from ESCC patients and normal controls was examined by immunohistochemistry using antibodies targeting whole bacteria and its unique secreted protease, the gingipain Kgp. qRT-PCR was used as a confirmatory approach to detect P. gingivalis 16S rDNA. Clinicopathologic characteristics were collected to analyze the relationship between P. gingivalis infection and development of ESCC.ResultsP. gingivalis was detected immunohistochemically in 61 % of cancerous tissues, 12 % of adjacent tissues and was undetected in normal esophageal mucosa. A similar distribution of lysine-specific gingipain, a catalytic endoprotease uniquely secreted by P. gingivalis, and P. gingivalis 16S rDNA was also observed. Moreover, statistic correlations showed P. gingivalis infection was positively associated with multiple clinicopathologic characteristics, including differentiation status, metastasis, and overall survival rate.ConclusionThese findings demonstrate for the first time that P. gingivalis infects the epithelium of the esophagus of ESCC patients, establish an association between infection with P. gingivalis and the progression of ESCC, and suggest P. gingivalis infection could be a biomarker for this disease. More importantly, these data, if confirmed, indicate that eradication of a common oral pathogen could potentially contribute to a reduction in the overall ESCC burden.Electronic supplementary materialThe online version of this article (doi:10.1186/s13027-016-0049-x) contains supplementary material, which is available to authorized users.
Tumor metastasis is a hallmark of cancer. Metastatic cancer cells often reside in distal tissues and organs in their dormant state. Mechanisms underlying the pre-metastatic niche formation are poorly understood. Here we show that in a colorectal cancer (CRC) model, primary tumors release integrin beta-like 1 (ITGBL1)-rich extracellular vesicles (EVs) to the circulation to activate resident fibroblasts in remote organs. The activated fibroblasts induce the premetastatic niche formation and promote metastatic cancer growth by secreting proinflammatory cytokine, such as IL-6 and IL-8. Mechanistically, the primary CRC-derived ITGBL1-enriched EVs stimulate the TNFAIP3-mediated NF-κB signaling pathway to activate fibroblasts. Consequently, the activated fibroblasts produce high levels of pro-inflammatory cytokines to promote metastatic cancer growth. These findings uncover a tumor-stromal interaction in the metastatic tumor microenvironment and an intimate signaling communication between primary tumors and metastases through the ITGBL1-loaded EVs. Targeting the EVs-ITGBL1-CAFs-TNFAIP3-NF-κB signaling axis provides an attractive approach for treating metastatic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.