We proposed a methodology that allows to maximize the population transfer from a high vibrational state of the a3Σ+ triplet state to the vibrational ground state of the X1Σ+ singlet state though the optimization of one pump and one dump laser pulses. The pump pulse is optimized using a fitness function, heuristically improved, that includes the effect of the spin-orbit coupling of the KRb [b-A]-scheme. The dump pulse is optimized to maximize the population transfer to the ground state. We performed a comparison with the case in which the pump and dump pulses are optimized to maximize the population transfer to the ground state employing a genetic algorithm with a single fitness function. The heuristic approach turned out to be 70% more efficient than a quantum optimal control optimization employing a single fitness function. The method proposed provides simple pulses that have an experimental realm.
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.
In this work we define a shape entropy by calculating the Shannon's entropy of the shape function. This shape entropy and its linear response to the change in the total number of electrons of the molecule are explored as descriptors of bonding properties. Calculations on selected molecular systems were performed. According to these, shape entropy properly describes electron delocalization while its linear response to ionization predicts changes in bonding patterns. The derivative of the shape entropy proposed turned out to be fully determined by the shape function and the Fukui function.
We studied the optimal quantum control of a molecular rotor in tilted laser fields using the time-sliced Herman–Kluk propagator for the evaluation of the optimal pulse and the light–dipole interaction as the control mechanism. The proposed methodology was used to study the effects of an optimal pulse on the evolution of a wave-packet in a double-well potential and in the effective potential of a molecular rotor in a collinear tilted fields setup. The amplitude and frequency of the control pulse were obtained in such a way that the transition probability between two rotational wave-packets was maximised
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.