When two metal nanostructures are placed nanometres apart, their optically driven free electrons couple electrically across the gap. The resulting plasmons have enhanced optical fields of a specific colour tightly confined inside the gap. Many emerging nanophotonic technologies depend on the careful control of this plasmonic coupling, including optical nanoantennas for high-sensitivity chemical and biological sensors, nanoscale control of active devices, and improved photovoltaic devices. But for subnanometre gaps, coherent quantum tunnelling becomes possible and the system enters a regime of extreme non-locality in which previous classical treatments fail. Electron correlations across the gap that are driven by quantum tunnelling require a new description of non-local transport, which is crucial in nanoscale optoelectronics and single-molecule electronics. Here, by simultaneously measuring both the electrical and optical properties of two gold nanostructures with controllable subnanometre separation, we reveal the quantum regime of tunnelling plasmonics in unprecedented detail. All observed phenomena are in good agreement with recent quantum-based models of plasmonic systems, which eliminate the singularities predicted by classical theories. These findings imply that tunnelling establishes a quantum limit for plasmonic field confinement of about 10(-8)λ(3) for visible light (of wavelength λ). Our work thus prompts new theoretical and experimental investigations into quantum-domain plasmonic systems, and will affect the future of nanoplasmonic device engineering and nanoscale photochemistry.
Electromagnetic coupling between plasmonic resonances in metallic nanoparticles allows for engineering of the optical response and generation of strong localized near-fields. Classical electrodynamics fails to describe this coupling across sub-nanometer gaps, where quantum effects become important owing to non-local screening and the spill-out of electrons. However, full quantum simulations are not presently feasible for realistically sized systems. Here we present a novel approach, the quantum-corrected model (QCm), that incorporates quantummechanical effects within a classical electrodynamic framework. The QCm approach models the junction between adjacent nanoparticles by means of a local dielectric response that includes electron tunnelling and tunnelling resistivity at the gap and can be integrated within a classical electrodynamical description of large and complex structures. The QCm predicts optical properties in excellent agreement with fully quantum mechanical calculations for small interacting systems, opening a new venue for addressing quantum effects in realistic plasmonic systems.
Coinage metal nanostructures support localised surface plasmons, which confine optical fields much tighter than their wavelength (1). This extreme enhancement enables vibrational spectroscopy within small volumes, even down to single molecules (2,3). For many years lateral resolution was believed to be 10 nm (4), however recent experiments resolve the atomic structure of single molecules using tipenhanced Raman spectroscopy (3) and directly sequence RNA strands (5). Atomistic simulations also suggest plasmonic confinement to atomic scales is possible (6). Here we show that light-activated mobilisation of surface atoms in a plasmonic hotspot triggers the formation of additional 'picocavities'bounded by a single gold atom. Their ultra-small light localisation alters which vibrational modes of trapped molecules are observed, due to strong optical field gradients that switch the Raman selection rules. The resulting cascaded ultra-strong plasmonic confinement pumps specific molecular bonds, thereby creating non-thermal vibrational populations, and forms a new type of optomechanical
Metallic structures with nanogap features have proven highly effective as building blocks for plasmonic systems, as they can provide a wide tuning range of operating frequencies and large near-field enhancements. Recent work has shown that quantum mechanical effects such as electron tunnelling and nonlocal screening become important as the gap distances approach the subnanometre length-scale. Such quantum effects challenge the classical picture of nanogap plasmons and have stimulated a number of theoretical and experimental studies. This review outlines the findings of many groups into quantum mechanical effects in nanogap plasmons, and discusses outstanding challenges and future directions.
Cucurbit[n]urils (CB[n]) are macrocyclic host molecules with subnanometer dimensions capable of binding to gold surfaces. Aggregation of gold nanoparticles with CB[n] produces a repeatable, fixed, and rigid interparticle separation of 0.9 nm, and thus such assemblies possess distinct and exquisitely sensitive plasmonics. Understanding the plasmonic evolution is key to their use as powerful SERS substrates. Furthermore, this unique spatial control permits fast nanoscale probing of the plasmonics of the aggregates "glued" together by CBs within different kinetic regimes using simultaneous extinction and SERS measurements. The kinetic rates determine the topology of the aggregates including the constituent structural motifs and allow the identification of discrete plasmon modes which are attributed to disordered chains of increasing lengths by theoretical simulations. The CBs directly report the near-field strength of the nanojunctions they create via their own SERS, allowing calibration of the enhancement. Owing to the unique barrel-shaped geometry of CB[n] and their ability to bind "guest" molecules, the aggregates afford a new type of in situ self-calibrated and reliable SERS substrate where molecules can be selectively trapped by the CB[n] and exposed to the nanojunction plasmonic field. Using this concept, a powerful molecular-recognition-based SERS assay is demonstrated by selective cucurbit[n]uril host-guest complexation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.