When two metal nanostructures are placed nanometres apart, their optically driven free electrons couple electrically across the gap. The resulting plasmons have enhanced optical fields of a specific colour tightly confined inside the gap. Many emerging nanophotonic technologies depend on the careful control of this plasmonic coupling, including optical nanoantennas for high-sensitivity chemical and biological sensors, nanoscale control of active devices, and improved photovoltaic devices. But for subnanometre gaps, coherent quantum tunnelling becomes possible and the system enters a regime of extreme non-locality in which previous classical treatments fail. Electron correlations across the gap that are driven by quantum tunnelling require a new description of non-local transport, which is crucial in nanoscale optoelectronics and single-molecule electronics. Here, by simultaneously measuring both the electrical and optical properties of two gold nanostructures with controllable subnanometre separation, we reveal the quantum regime of tunnelling plasmonics in unprecedented detail. All observed phenomena are in good agreement with recent quantum-based models of plasmonic systems, which eliminate the singularities predicted by classical theories. These findings imply that tunnelling establishes a quantum limit for plasmonic field confinement of about 10(-8)λ(3) for visible light (of wavelength λ). Our work thus prompts new theoretical and experimental investigations into quantum-domain plasmonic systems, and will affect the future of nanoplasmonic device engineering and nanoscale photochemistry.
Physical vapor deposition under conditions of obliquely incident flux and limited adatom diffusion results in a film with a columnar microstructure. These columns will be oriented toward the vapor source and substrate rotation can be used to sculpt the columns into various morphologies. This is the basis for glancing angle deposition (GLAD), a technique for fabricating porous thin films with engineered structures. The origin of the columnar structure characteristic of GLAD films is discussed in terms of nucleation processes and structure zone models. As deposition continues, the columnar structures are influenced by atomic-scale ballistic shadowing and surface diffusion. Competitive growth is observed where the tallest columns grow at the expense of smaller features. The column shape evolves during growth, and power-law scaling behavior is observed as shown in both experimental results and theoretical simulations. Due to the porous nature of the films and the increased surface area, a variety of chemical applications and sensor device architectures are possible. Because the GLAD process provides precise nanoscale control over the film structure, characteristics such as the mechanical, magnetic, and optical properties of the deposited film may be engineered for various applications. Depositing onto prepatterned substrates forces the columns to adopt a planar ordering, an important requirement for photonic crystal applications.
Colorimetric sensing, where environmental changes are transduced into visual color changes, provides an intuitively simple yet powerful detection mechanism that is well‐suited to the realization of low‐cost and low‐power sensors. A new approach in colorimetric sensing exploits the structural colour of photonic crystals (PCs) to create new color‐changing materials, however much work is still required to simultaneously achieve optimized sensor response and low‐cost, scalable nanofabrication. This work responds to these challenges by designing, fabricating and evaluating a mesoporous PC sensor optimized to exhibit as large as possible color‐shift in response to small changes in relative humidity (RH). A novel design optimization is achieved by employing a colorimetric framework that translates simulated/measured spectral quantities into numeric color values directly related to color perception. The sensor design is then realized using a mesoporous TiO2 PC, fabricated using glancing angle deposition (GLAD). The GLAD technique is a bottom‐up, single‐step nanofabrication method providing the nanoscale precision required to successfully realize the optimized PC design. The PC sensor is shown to be highly sensitive and stable: the PC structural‐color changes visibly due to RH changes smaller than 1%, and the response is stable over hundreds of hours of sensor operation. Additionally, measurements and simulations are used to reveal the important link between the PC optical modes, pore geometry, and sensor response which will be useful in future PC sensor experiments. The combination of bottom‐up nanofabrication with visible color‐based sensing, coupled with the useful design methodology, will lead to further developments in low‐cost, widely deployable optical sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.