Fentanyl and its analogs have been mainstays for the treatment of severe to moderate pain for many years. In this review, we outline the structural and corresponding synthetic strategies that have been used to understand the structure–biological activity relationship in fentanyl-related compounds and derivatives and their biological activity profiles. We discuss how changes in the scaffold structure can change biological and pharmacological activities. Finally, recent efforts to design and synthesize novel multivalent ligands that act as mu and delta opioid receptors and NK-1 receptors are discussed.
An SAR study on the Dmt-substituted enkephalin-like tetrapeptide with a N-phenyl-N-piperidin-4-yl propionamide moiety at C-terminal was performed, and has resulted in highly potent ligands at μ and δ opioid receptors. In general, ligands with the substitution of D-Nle 2 and halogenation of the aromatic ring of Phe 4 showed highly increased opioid activities. Ligand 6 with good biological activities in vitro demonstrated potent in vivo antihyperalgesic and antiallodynic effects in the tailflick assay.
Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery. First-line therapies for moderate to severe pain include prescriptions for common mu opioid receptor agonists such as morphine and its various derivatives. The epidemic use, misuse and diversion of prescription opioids has highlighted just one of the adverse effects of mu opioid analgesics. Alternative approaches include novel opioids that target delta or kappa opioid receptors, or compounds that interact with two or more of the opioid receptors.
Aims
Here we report the pharmacology of a newly synthesized bifunctional opioid agonist (RV-Jim-C3) derived from combined structures of fentanyl and enkephalin in rodents. RV-Jim-C3 has high affinity binding to both mu and delta opioid receptors.
Main Methods
Mice and rats were used to test RV-Jim-C3 in a tailflick test with and without opioid selective antagonist for antinociception. RV-Jim-C3 was tested for anti-inflammatory and antihypersensitivity effects in a model of formalin-induced flinching and spinal nerve ligation. To rule out motor impairment, rotarod was tested in rats.
Key findings
RV-Jim-C3 demonstrates potent-efficacious activity in several in vivo pain models including inflammatory pain, antihyperalgesia and antiallodynic with no significant motor impairment.
Significance
This is the first report of a fentanyl-based structure with delta and mu opioid receptor activity that exhibits outstanding antinociceptive efficacy in neuropathic pain, reducing the propensity of unwanted side effects driven by current therapies that are unifunctional mu opioid agonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.