Abstract. A primary mercury gas standard was developed at Van Swinden Laboratory (VSL) to establish an International System of Units (SI)-traceable reference point for mercury concentrations at emission and background levels in the atmosphere. The majority of mercury concentration measurements are currently made traceable to the empirically determined vapour pressure of mercury. The primary mercury gas standard can be used for the accurate and precise calibration of analytical systems used for measuring mercury concentrations in air. It has been especially developed to support measurements related to ambient air monitoring (1–2 ng m−3), indoor and workplace-related mercury concentration levels according to health standards (from 50 ng m−3 upwards) as well as stationary source emissions (from 1 µg m−3 upwards). The primary mercury gas standard is based on diffusion according to ISO 6154-8. Calibration gas mixtures are obtained by combining calibrated mass flows of nitrogen and air through a generator holding diffusion cells containing elemental mercury. In this paper, we present the results of comparisons between the primary gas standard and mercury calibration methods maintained by NPL (National Physical Laboratory in the United Kingdom), a National Metrology Institute (NMI), and the Jozef Stefan Institute (JSI), a Designated Institute (DI). The calibration methods currently used at NPL and JSI are based on the bell-jar calibration apparatus in combination with the Dumarey equation or a NIST (National Institute of Standards and Technology in the United States) reference material. For the comparisons, mercury was sampled on sorbent traps to obtain transfer standards with levels between 2 and 1000 ng with an expanded uncertainty not exceeding 3 % (k=2). The comparisons performed show that the results for the primary gas standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary gas standard and the Dumarey equation.
Abstract. A primary mercury gas standard was developed at VSL to establish an SI-traceable reference point for mercury concentrations at emission and background levels in the atmosphere. The majority of mercury concentration measurements are currently made traceable to the empirically determined vapour pressure of mercury. The primary mercury gas standard can be used for the accurate and precise calibration of analytical systems used for measuring mercury concentrations in air. It has been especially developed to support measurements related to ambient air monitoring (1 ng m−3–2 ng m−3), indoor and workplace related mercury concentration levels according to health standards (from 50 ng m−3 upwards) as well as to stationary source emissions (from 1 µg m−3 upwards). The primary mercury gas standard is based on diffusion according to ISO 6154-8. Calibration gas mixtures are obtained by combining calibrated mass flows of nitrogen and air through a generator holding diffusion cells, containing elemental mercury. In this paper, we present the results of comparisons between the primary standard and mercury calibration methods maintained by NPL, a National Metrology Institute (NMI), and JSI, a Designated Institute (DI). The calibration methods currently used at NPL and JSI are based on the bell-jar calibration apparatus in combination with the Dumarey equation or a NIST reference material. For the comparisons, mercury was sampled on sorbent traps to obtain transfer standards with levels between 2 ng and 1000 ng with an expanded uncertainty not exceeding 3 % (k = 2). The comparisons performed show that the results for the primary standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary standard and the Dumarey equation.
Siloxanes are silicon-containing volatile organic compounds that occur in air, biogas and biomethane. Their presence in biogas and biomethane may give rise to silica deposits in gas transmission and distribution infrastructure, as well as in end-user appliances. The silicon concentration in biomethane is therefore regulated, and implementing these regulations requires reliable measurement methods and appropriate certified reference materials (CRMs) to calibrate analytical instruments. In this work, the primary measurement standards of two national metrology institutes are compared to assess their equivalence by means of gas chromatography analysis. The comparison addressed hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) in methane gas mixtures. Two mixtures were exchanged, one with siloxane amount fractions at the ppb-level as specified in the European specification EN 16723, and a second on ppm-level. The latter CRMs can be dynamically diluted or directly used to process concentrated biomethane samples. The results at both levels demonstrate equivalence in the preparation and analysis of the addressed siloxanes in methane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.