Current measurement and calibration capabilities for mercury vapor in air are maintained at levels of 0.2–40 μg Hg m−3. In this work, a mercury vapor generator has been developed to establish metrological traceability to the international system of units (SI) for mercury vapor measurement results ≤15 ng Hg m−3, i.e. closer to realistic ambient air concentrations (1–2 ng Hg m−3) []. Innovations developed included a modified type of diffusion cell, a new measurement method to weigh the loss in (mercury) mass of these diffusion cells during use (ca. 6–8 μg mass difference between successive weighings), and a new housing for the diffusion cells to maximize flow characteristics and to minimize temperature variations and adsorption effects. The newly developed mercury vapor generator system was tested by using diffusion cells generating 0.8 and 16 ng Hg min−1. The results also show that the filter system, to produce mercury free air, is working properly. Furthermore, and most importantly, the system is producing a flow with a stable mercury vapor content. Some additional improvements are still required to allow the developed mercury vapor generator to produce SI traceable mercury vapor concentrations, based upon gravimetry, at much lower concentration levels and reduced measurement uncertainties than have been achieved previously. The challenges to be met are especially related to developing more robust diffusion cells and better mass measurement conditions. The developed mercury vapor generator will contribute to more reliable measurement results of mercury vapor at ambient and background air levels, and also to better safety standards and cost reductions in industrial processes, such as the liquefied natural gas field, where aluminum main cryogenic heat exchangers are used which are particularly prone to corrosion caused by mercury.
Abstract. A primary mercury gas standard was developed at Van Swinden Laboratory (VSL) to establish an International System of Units (SI)-traceable reference point for mercury concentrations at emission and background levels in the atmosphere. The majority of mercury concentration measurements are currently made traceable to the empirically determined vapour pressure of mercury. The primary mercury gas standard can be used for the accurate and precise calibration of analytical systems used for measuring mercury concentrations in air. It has been especially developed to support measurements related to ambient air monitoring (1–2 ng m−3), indoor and workplace-related mercury concentration levels according to health standards (from 50 ng m−3 upwards) as well as stationary source emissions (from 1 µg m−3 upwards). The primary mercury gas standard is based on diffusion according to ISO 6154-8. Calibration gas mixtures are obtained by combining calibrated mass flows of nitrogen and air through a generator holding diffusion cells containing elemental mercury. In this paper, we present the results of comparisons between the primary gas standard and mercury calibration methods maintained by NPL (National Physical Laboratory in the United Kingdom), a National Metrology Institute (NMI), and the Jozef Stefan Institute (JSI), a Designated Institute (DI). The calibration methods currently used at NPL and JSI are based on the bell-jar calibration apparatus in combination with the Dumarey equation or a NIST (National Institute of Standards and Technology in the United States) reference material. For the comparisons, mercury was sampled on sorbent traps to obtain transfer standards with levels between 2 and 1000 ng with an expanded uncertainty not exceeding 3 % (k=2). The comparisons performed show that the results for the primary gas standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary gas standard and the Dumarey equation.
Abstract. A primary mercury gas standard was developed at VSL to establish an SI-traceable reference point for mercury concentrations at emission and background levels in the atmosphere. The majority of mercury concentration measurements are currently made traceable to the empirically determined vapour pressure of mercury. The primary mercury gas standard can be used for the accurate and precise calibration of analytical systems used for measuring mercury concentrations in air. It has been especially developed to support measurements related to ambient air monitoring (1 ng m−3–2 ng m−3), indoor and workplace related mercury concentration levels according to health standards (from 50 ng m−3 upwards) as well as to stationary source emissions (from 1 µg m−3 upwards). The primary mercury gas standard is based on diffusion according to ISO 6154-8. Calibration gas mixtures are obtained by combining calibrated mass flows of nitrogen and air through a generator holding diffusion cells, containing elemental mercury. In this paper, we present the results of comparisons between the primary standard and mercury calibration methods maintained by NPL, a National Metrology Institute (NMI), and JSI, a Designated Institute (DI). The calibration methods currently used at NPL and JSI are based on the bell-jar calibration apparatus in combination with the Dumarey equation or a NIST reference material. For the comparisons, mercury was sampled on sorbent traps to obtain transfer standards with levels between 2 ng and 1000 ng with an expanded uncertainty not exceeding 3 % (k = 2). The comparisons performed show that the results for the primary standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary standard and the Dumarey equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.