Streptococcus pneumoniae colonizes the human upper respiratory tract, and this asymptomatic colonization is known to precede pneumococcal disease. In this report, chemically defined and semisynthetic media were used to identify the initial steps of biofilm formation by pneumococcus during growth on abiotic surfaces such as polystyrene or glass. Unencapsulated pneumococci adhered to abiotic surfaces and formed a three-dimensional structure about 25 m deep, as observed by confocal laser scanning microscopy and low-temperature scanning electron microscopy. Choline residues of cell wall teichoic acids were found to play a fundamental role in pneumococcal biofilm development. The role in biofilm formation of choline-binding proteins, which anchor to the teichoic acids of the cell envelope, was determined using unambiguously characterized mutants. The results showed that LytA amidase, LytC lysozyme, LytB glucosaminidase, CbpA adhesin, PcpA putative adhesin, and PspA (pneumococcal surface protein A) mutants had a decreased capacity to form biofilms, whereas no such reduction was observed in Pce phosphocholinesterase or CbpD putative amidase mutants. Moreover, encapsulated, clinical pneumococcal isolates were impaired in their capacity to form biofilms. In addition, a role for extracellular DNA and proteins in the establishment of S. pneumoniae biofilms was demonstrated. Taken together, these observations provide information on conditions that favor the sessile mode of growth by S. pneumoniae. The experimental approach described here should facilitate the study of bacterial genes that are required for biofilm formation. Those results, in turn, may provide insight into strategies to prevent pneumococcal colonization of its human host.
Streptococcus pneumoniae has re-emerged as a major cause of morbidity and mortality throughout the world and its continuous increase in antimicrobial resistance is rapidly becoming a leading cause of concern for public health. This review is focussed on the analysis of recent insights on the study of capsular polysaccharide biosynthesis, and cell wall (murein) hydrolases, two fundamental pneumococcal virulence factors. Besides, we have also re-evaluated the molecular biology of the pneumococcal phage, their possible role in pathogenicity and in the shaping of natural populations of S. pneumoniae. Precise knowledge of the topics reviewed here should facilitate the rationale to move towards the design of alternative ways to combat pneumococcal disease.
Total heavy metal concentrations were determined in soil samples of seven selected areas along the Guadiamar river valley affected by the toxic flood, after removal of the deposited sludge. Mean total concentrations of nine elements (As, Au, Bi, Cd, Cu, Pb, Sb, Tl and Zn) out of the 23 (As, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, In, Mn, Mo, Ni, Pb, Sb, Sc, Sn, Th, Tl, U, V, Y and Zn) analysed were higher in sludge-covered soils than in unaffected soils. Mean values of total As, Au, Pb, Sb, Tl and Zn in sludge-affected soils were higher than the upper limits for normal soils world-wide. Mean concentrations of Bi, Cd and Cu were within these ranges, although some individual values exceeded the upper limits. In all sampling areas, severe heavy metal pollution was observed in the superficial layers (0-20 cm) of most of the affected soils, which decreased downward in the soil profile. Generally, in soils with more than 25% of clay, concentration of heavy metals below the 20-cm depth decreased to values close to those of the background level of the Guadiamar valley soils, while in coarser soils, heavy metal pollution penetrated below this depth, being noticeable down to a depth of at least 50-80 cm.
Our findings suggest strongly that phage lysins protect animals from bacteraemia and death. Moreover, the simultaneous attack of the pneumococcal peptidoglycan by a lysozyme and an amidase leads to a remarkable effect through enhanced destruction of the bacterial cell wall. The benefits of therapy with enzybiotics against pneumococcus reported here might warrant the examination of alternative strategies for the treatment of diseases caused by clinically relevant pathogens.
SummaryA biochemical approach to identify proteins with high af®nity for choline-containing pneumococcal cell walls has allowed the localization, cloning and sequencing of a gene (lytC ) coding for a protein that degrades the cell walls of Streptococcus pneumoniae. The lytC gene is 1506 bp long and encodes a protein (LytC) of 501 amino acid residues with a predicted M r of 58 682. LytC has a cleavable signal peptide, as demonstrated when the mature protein (about 55 kDa) was puri®ed from S. pneumoniae. Biochemical analyses of the pure, mature protein proved that LytC is a lysozyme. Combined cell fractionation and Western blot analysis showed that the unprocessed, primary product of the lytC gene is located in the pneumococcal cytoplasm whereas the processed, active form of LytC is tightly bound to the cell envelope. In vivo experiments demonstrated that this lysozyme behaves as a pneumococcal autolytic enzyme at 308C. The DNA region encoding the 253 C-terminal amino acid residues of LytC has been cloned and expressed in Escherichia coli. The truncated protein exhibits a low, but signi®cant, choline-independent lysozyme activity, which suggests that this polypeptide adopts an active conformation. Self-alignment of the N-terminal part of the deduced amino acid sequence of LytC revealed the presence of 11 repeated motifs. These results strongly suggest that the lysozyme reported here has changed the general building plan characteristic of the choline-binding proteins of S. pneumoniae and its bacteriophages, i.e. the choline-binding domain and the catalytic domain are located, respectively, at the Nterminal and the C-terminal moieties of LytC. This work illustrates the natural versatility exhibited by the pneumococcal genes coding for choline-binding proteins to fuse separated catalytic and substrate-binding domains and create new and functional mature proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.