Acute kidney injury (AKI) is one of the most relevant health issues, leading to millions of deaths. The magnitude of the phenomenon remarks the urgent need for innovative and effective therapeutic approaches. Cell-based therapy with renal progenitor cells (RPCs) has been proposed as a possible strategy. Studies have shown the feasibility of directing embryonic stem cells or induced Pluripotent Stem Cells (iPSCs) towards nephrogenic intermediate mesoderm and metanephric mesenchyme (MM). However, the functional activity of iPSC-derived RPCs has not been tested in animal models of kidney disease. Here, through an efficient inductive protocol, we directed human iPSCs towards RPCs that robustly engrafted into damaged tubuli and restored renal function and structure in cisplatin-mice with AKI. These results demonstrate that iPSCs are a valuable source of engraftable cells with regenerative activity for kidney disease and create the basis for future applications in stem cell-based therapy.
Bowman's capsule parietal epithelial cell activation occurs in several human proliferative glomerulonephritides. The cellular composition of the resulting hyperplastic lesions is controversial, although a population of CD133(+)CD24(+) progenitor cells has been proposed to be a major constituent. Mediator(s) involved in proliferation and migration of progenitor cells into the Bowman's space have been poorly explored. In a series of 36 renal biopsies of patients with proliferative and nonproliferative glomerulopathies, dysregulated CD133(+)CD24(+) progenitor cells of the Bowman's capsule invade the glomerular tuft exclusively in proliferative disorders. Up-regulation of the CXCR4 chemokine receptor on progenitor cells was accompanied by high expression of its ligand, SDF-1, in podocytes. Parietal epithelial cell proliferation might be sustained by increased expression of the angiotensin II (Ang II) type-1 (AT1) receptor. Similar changes of CXCR4, SDF-1, and AT1 receptor expression were found in Munich Wistar Frömter rats with proliferative glomerulonephritis. Moreover, an angiotensin-converting enzyme inhibitor normalized CXCR4 and AT1 receptor expression on progenitors concomitant with regression of crescentic lesions in a patient with crescentic glomerulonephritis. These results suggest that glomerular hyperplastic lesions derive from the proliferation and migration of renal progenitors in response to injured podocytes. The Ang II/AT1 receptor pathway may participate, together with SDF-1/CXCR4 axis, to the dysregulated response of renal precursors. Thus, targeting the Ang II/AT1 receptor/CXCR4 pathways may be beneficial in severe forms of glomerular proliferative disorders.
Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact threedimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research.
Activation of endothelin-A receptor (ET A R) by endothelin-1 (ET-1) drives epithelial-to-mesenchymal transition in ovarian tumor cells through b-arrestin signaling. Here, we investigated whether this pathogenetic pathway could affect podocyte phenotype in proliferative glomerular disorders. In cultured mouse podocytes, ET-1 caused loss of the podocyte differentiation marker synaptopodin and acquisition of the mesenchymal marker a-smooth muscle actin. ET-1 promoted podocyte migration via ET A R activation and increased b-arrestin-1 expression. Activated ET A R recruited b-arrestin-1 to form a trimeric complex with Src leading to epithelial growth factor receptor (EGFR) transactivation and b-catenin phosphorylation, which promoted gene transcription of Snail. Increased Snail expression fostered ET-1-induced migration as confirmed by Snail knockdown experiments. Silencing of b-arrestin-1 prevented podocyte phenotypic changes and motility and inhibited ET A R-driven signaling. In vitro findings were confirmed in doxorubicin (Adriamycin)-induced nephropathy. Mice receiving Adriamycin developed renal injury with loss of podocytes and hyperplastic lesion formation; b-arrestin-1 expression increased in visceral podocytes and in podocytes entrapped in pseudo-crescents. Administration of the selective ET A R antagonist sitaxsentan prevented podocyte loss, formation of the hyperplastic lesions, and normalized expression of glomerular b-arrestin-1 and Snail. Increased b-arrestin-1 levels in podocytes retrieved from crescents of patients with proliferative glomerulopathies confirmed the translational relevance of these findings and suggest the therapeutic potential of ET A R antagonism for a group of diseases still needing a specific treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.