Although some instructions hurt performance more than others, current processors typically apply scheduling and speculation as if each instruction was equally costly. Instruction cost can be naturally expressed through the critical path: if we could predict it at run-time, egalitarian policies could be replaced with cost-sensitive strategies that will grow increasingly effective as processors become more parallel.This paper introduces a hardware predictor of instruction criticality and uses it to improve performance. The predictor is both effective and simple in its hardware implementation. The effectiveness at improving performance stems from using a dependence-graph model of the microarchitectural critical path that identifies execution bottlenecks by incorporating both data and machine-specific dependences. The simplicity stems from a token-passing algorithm that computes the critical path without actually building the dependence graph.By focusing processor policies on critical instructions, our predictor enables a large class of optimizations. It can (i) give priority to critical instructions for scarce resources (functional units, ports, predictor entries); and (ii) suppress speculation on non-critical instructions, thus reducing "useless" misspeculations. We present two case studies that illustrate the potential of the two types of optimization, we show that (i) critical-pathbased dynamic instruction scheduling and steering in a clustered architecture improves performance by as much as 21% (10% on average); and (ii) focusing value prediction only on critical instructions improves performance by as much as 5%, due to removing nearly half of the misspeculations.
Data-layout optimizations rearrange fields within objects, objects within objects, and objects within the heap, with the goal of increasing spatial locality. While the importance of data-layout optimizations has been growing, their deployment has been limited, partly because they lack a unifying framework. We propose a parameterizable framework for data-layout optimization of generalpurpose applications. Acknowledging that finding an optimal layout is not only NP-hard, but also poorly approximable, our framework finds a good layout by searching the space of possible layouts, with the help of profile feedback. The search process iteratively prototypes candidate data layouts, evaluating them by "simulating" the program on a representative trace of memory accesses. To make the search process practical, we develop space-reduction heuristics and optimize the expensive simulation via memoization. Equipped with this iterative approach, we can synthesize layouts that outperform existing non-iterative heuristics, tune application-specific memory allocators, as well as compose multiple data-layout optimizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.